On the Solubility of Hydrogen in Metals and Alloys

An. D. Zolotarenko$^{1,2}$, Ol. D. Zolotarenko$^{1,2}$, Z. A. Matysina$^1$, N. A. Shvachko$^{1,3}$, N. Y. Akhanova$^{4,5}$, M. Ualkhanova$^5$, D. V. Schur$^{1,6}$, M. T. Gabdullin$^4$, Yu. I. Zhirko$^6$, Yu. M. Solonin$^1$, V. V. Lobanov$^2$, D. V. Ismailov$^{5,7}$, A. D. Zolotarenko$^1$, and I. V. Zagorulko$^8$

$^1$I. M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
$^2$O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^3$Kyiv National University of Construction and Architecture, 31 Povitroflotskyi Ave., UA-03037 Kyiv, Ukraine
$^4$Kazakh–British Technical University, 59 Tole bi Str., 050000 Almaty, Kazakhstan
$^5$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
$^6$Institute of Applied Physics of the N.A.S. of Ukraine, 58 Petropavlivska Str., UA-40000 Sumy, Ukraine
$^7$NJSC ‘K. I. Satbayev Kazakh National Research Technical University’, 22a Satbaev Str., 050013 Almaty, Kazakhstan
$^8$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 13.07.2023; final version — 13.08.2023 Download PDF logo PDF

Abstract
We review and analyse the factors affecting the solubility of interstitial atoms (H) in the metal alloys. The electronic structure and atomic ordering of the AB-type alloys, as well as methods of calculation of the solubility for ordering cubic alloys with octahedral interstitial pores are considered. We study the parameters of interstitial atoms, which make it possible to predict a decrease or increase in solubility, when the main role belongs to the ordering of the system. The parameters of the static distribution of atoms are determined. The relative solubility is represented as a function of the long-range order parameter (η), and the influence of bulk effects on this parameter is considered. The following systems are studied: Fe–Ni, Au–Cu, Pd–Au, Fe–Cr, Ti–Al, Cu–Zn, Ag–Zn, Fe–Al, Au–Ag, Fe–V, Pd–Pt, Ni–Mn, Ni–Fe, Cu–Au, Cu–Pd, Pd–Nb, Pd–Ag, as well as three-component alloys. As shown, through introducing impurities into the alloy, we can change significantly its physical-mechanical, electrical, magnetic, and other properties.

Keywords: alloys, interstitial atoms, solubility, ordering, body-centred cubic (b.c.c.) structure, face-centred cubic (f.c.c.) structure, molecular kinetic theory.

DOI: https://doi.org/10.15407/ufm.24.03.415

Citation: An. D. Zolotarenko, Ol. D. Zolotarenko, Z. A. Matysina, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, Yu. I. Zhirko, Yu. M. Solonin, V. V. Lobanov, D. V. Ismailov, A. D. Zolotarenko, and I. V. Zagorulko, On the Solubility of Hydrogen in Metals and Alloys, Progress in Physics of Metals, 24, No. 3: 415–445 (2023)


References  
  1. G.A. Baglyuk, O.M. Ivasyshyn, O.O. Stasyuk, and D.G. Savvakin, The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds, Powder Metall. Met. Ceram., 56: 45 (2017); https://doi.org/10.1007/s11106-017-9870-z
  2. D.N. Brodnikovskii, N.I. Lugovoi, N.P. Brodnikovskii, V.N. Slyunyaev, N.N. Kuz’menko, A.D. Vasil’ev, and S.A. Firstov, Powder metallurgy production of Ti–5.4 wt.% Si alloy. I. Simulating the formation of powder particles by centrifugal atomization, Powder Metall. Met. Ceram., 52: 409 (2013); https://doi.org/10.1007/s11106-013-9541-7
  3. K.A. Abdullin, M.T. Gabdullin, L.V. Gritsenko, D.V. Ismailov, Z.K. Kalkozova, S.E. Kumekov, Z.O. Mukash, A.Y. Sazonov, and E.I. Terukov, Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma, Semiconductors, 50, No. 8: 1010 (2016); https://doi.org/10.1134/S1063782616080029
  4. G.A. Baglyuk, L.A. Sosnovskii, and V.I. Volfman, Effect of carbon content on the properties of sintered steels doped with manganese and copper, Powder Metall. Met. Ceram., 50: 189 (2011); https://doi.org/10.1007/s11106-011-9317-x
  5. Y. Matvienko, A. Rud, S. Polishchuk, Y. Zagorodniy, N. Rud, and V. Trachevski, Effect of graphite additives on solid-state reactions in eutectic Al–Cu powder mixtures during high-energy ball milling, Appl. Nanosci., 10, No. 8: 2803 (2020); https://doi.org/10.1007/s13204-019-01086-2
  6. G.A. Baglyuk, A.I. Tolochin, A.V. Tolochina, R.V. Yakovenko, A.N. Gripachevckii, and M.E. Golovkova, Effect of process conditions on the structure and properties of the hot-forged fe3al intermetallic alloy, Powder Metall. Met. Ceram., 55: 297 (2016); https://doi.org/10.1007/s11106-016-9805-0
  7. O.O. Havryliuk and O.Y. Semchuk, Formation of periodic structures on the solid surface under laser irradiation, Ukr. J. Phys., 62, No. 1: 20 (2017); https://doi.org/10.15407/ujpe62.01.0020
  8. E.V. Khomenko, G.A. Baglyuk, and R.V. Minakova, Effect of deformation processing on the properties of Cu–50% Cr composite, Powder Metal. Met. Ceram., 48: 211 (2009); https://doi.org/10.1007/s11106-009-9108-9
  9. A.V. Mostovshchikov, A.P. Ilyin, I.K. Zabrodina, L.O. Root, and D.V. Ismailov, Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability, Key Engineering Materials, 769: 146 (2018); https://doi.org/10.4028/www.scientific.net/KEM.769.146
  10. O.N. Sizonenko, G.A. Baglyuk, E.I. Taftai, A.D. Zaichenko, E.V. Lipyan, A.S. Torpakov, A.A. Zhdanov, and N.S. Pristash, Dispersion and carburization of titanium powders by electric discharge, Powder Metall. Met. Ceram., 52: 247 (2013); https://doi.org/10.1007/s11106-013-9520-z
  11. G.A. Baglyuk, S.G. Napara-Volgina, V.I. Vol’fman, A.A. Mamonova, and S.G. Pyatachuk, Thermal synthesis of Fe–B4C powder master alloys, Powder Metall. Met. Ceram., 48: 381 (2009); https://doi.org/10.1007/s11106-009-9156-1
  12. V.M. Gun’ko, V.V. Turov, E.M. Pakhlov, A.K. Matkovsky, T.V. Krupska, M.T. Kartel, and B. Charmas, Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica, J. Non-Cryst. Sol., 500: 351 (2018); https://doi.org/10.1016/j.jnoncrysol.2018.08.020
  13. I. Brodnikovska, L. Khomenkova, N. Korsunska, Yu. Polishchuk, M. Brychevskyi, Ye. Brodnikovskyi, D. Brodnikovskyi, I. Polishko, and O. Vasylyev, he investigation of 10Sc1CeSZ structure transformation and ionic conductivity, Mater. Today: Proc., 50, Pt. 4: 487 (2022); https://doi.org/10.1016/j.matpr.2021.11.299
  14. A.A. Biliuk, O.Y. Semchuk, and O.O. Havryliuk, Width of the surface plasmon resonance line in spherical metal nanoparticles, Semicond. Phys., Quantum Electron. Optoelectron., 23, No. 3: 308 (2020); https://doi.org/10.15407/spqeo23.03.308
  15. G.A. Baglyuk, V.N. Terekhov, and Y.F. Ternovoi, Structure and properties of powder austenitic die steels, Powder Metall. Met. Ceram., 45: 317 (2006); https://doi.org/10.1007/s11106-006-0083-0
  16. I. Brodnikovska, N. Korsunska, L. Khomenkova, Yu. Polishchuk, S. Lavoryk, M. Brychevskyi, Y. Brodnikovskyi, and O. Vasylyev, Grains, grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant content, Mater. Today: Proc., 6, Pt. 2: 79 (2019); https://doi.org/10.1016/j.matpr.2018.10.078
  17. N. Nastasiienko, B. Palianytsia, M. Kartel, M. Larsson, and T. Kulik, Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and FT–IR spectroscopy, Colloids Interfaces, 3, No. 1: 34 (2019); https://doi.org/10.3390/colloids3010034
  18. О.І. Тоlochyn, G.А. Baglyuk, O.V. Tolochyna, Y.І. Evych, Y.M. Podrezov, and H.M. Molchanovska, Structure and physicomechanical properties of the Fe3Al intermetallic compound obtained by impact hot compaction, Mater. Sci., 56: 499 (2021); https://doi.org/10.1007/s11003-021-00456-y
  19. O.Y. Semchuk, A.A. Biliuk, and O.O. Havryliuk, The kinetic theory of the width of surface plasmon resonance line in metal nanoparticles, Springer Proc. Phys., 264: 3 (2021); https://doi.org/10.1007/978-3-030-74800-5_1
  20. D.N. Brodnikovskii, N.I. Lugovoi, N.P. Brodnikovskii, V.N. Slyunyaev, L.D. Kulak, A.D. Vasil’ev, and S.A. Firstov, Powder metallurgy production of Ti–5.4 wt.% Si alloy. II. Structure and strength of the sintered material, Powder Metall. Met. Ceram., 52: 539 (2014); https://doi.org/10.1007/s11106-014-9557-7
  21. A.A Biliuk, O.Yu. Semchuk, and O.O. Havryliuk, Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance, Chem., Phys. Technol. Surf., 13, No. 2: 190 (2022); https://doi.org/10.15407/HFTP13.02.190
  22. A.P. Ilyin, A.V. Mostovshchikov, L.O. Root, S.V. Zmanovskiy, D.V. Ismailov, and G.U. Ruzieva, Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 330, No. 8: 87 (2019) (in Russian); https://doi.org/10.18799/24131830/2019/8/2215
  23. L. Karachevtseva, M. Kartel, V. Kladko, O. Gudymenko, W. Bo, V. Bratus, O. Lytvynenko, V. Onyshchenko, and O. Stronska, Functionalization of 2D macroporous silicon under the high-pressure oxidation, Appl. Surf. Sci., 434: 142 (2018); https://doi.org/10.1016/j.apsusc.2017.10.029
  24. I. Brodnikovska, M. Brychevskyia, Y. Brodnikovskyi, D. Brodnikovskyi, O. Vasylyev, and A. Smirnova, Joint impedance spectroscopy and fractography data analysis of ceria doped scandia stabilized zirconia solid electrolyte modified by powder types and sintering temperature, French-Ukr. J. Chem., 6, No. 1: 128 (2018); https://doi.org/10.17721/fujcV6I1P128-141
  25. G.A. Baglyuk and L.A. Poznyak, The sintering of powder metallurgy high-speed steel with activating additions, Powder Metall. Met. Ceram., 41: 366 (2002); https://doi.org/10.1023/A:1021113025628
  26. D.N. Brodnikovsky, A.V. Golovash, S.V. Tkachenko, I.Yu. Okun, N.N. Kuz’menko, and S.A. Firstov, Metallofiz. Noveishie Tekhnol., 28: 165 (2006).
  27. G.A. Baglyuk and L.A. Poznyak, Poroshkovaya Metallurgiya [Powder Metallurgy], Nos. 1–2: 34 (2001) (in Russian).
  28. D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, The forming peculiarities of C60 molecule, NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (2008), p. 53; https://doi.org/10.1007/978-1-4020-8898-8_5
  29. Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Comparative analysis of products of the fullerenes’ and carbon-nanostructures’ synthesis using the SIGE and FGDG-7 grades of graphite, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
  30. V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod'ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
  31. M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Positron annihilation in C60 fullerites and fullerene-like nanovoids, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
  32. V.I. Lad’yanov, R.M. Nikonova, N.S. Larionova, V.V. Aksenova, V.V. Mukhgalin, and A.D. Rud’, Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation, Phys. Solid State, 55: 1319 (2013); https://doi.org/10.1134/S1063783413060206
  33. Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Iron in Endometallofullerenes, Prog. Phys. Met., 23, No. 3: 510–527 (2022); https://doi.org/10.15407/ufm.23.03.510
  34. M.T. Kartel, K.V. Voitko, Y.V. Grebelna, S.V. Zhuravskyi, K.O. Ivanenko, T.V. Kulyk, S.M. Makhno, and Y.I. Sementsov, Changes in the structure and properties of graphene oxide surfaces during reduction and modification, Chem., Phys. Technol. Surf., 13, No. 2: 179 (2022); https://doi.org/10.15407/hftp13.02.179
  35. A.D. Rud and I.M. Kiryan, Quantitative analysis of the local atomic structure in disordered carbon, J. Non-Cryst. Sol., 386: 1 (2014); https://doi.org/10.1016/j.jnoncrysol.2013.11.010
  36. Yu.I. Sementsov, O.А. Cherniuk, S.V. Zhuravskyi, W. Bo, K.V. Voitko, O.M. Bakalinska, and M.T. Kartel, Synthesis and catalytic properties of nitrogen-containing carbon nanotubes, Chem., Phys. Technol. Surf., 12, No. 2: 135 (2021); https://doi.org/10.15407/hftp12.02.135
  37. S. Barany, N. Kartel’, and R. Meszaros, Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants, Colloid J., 76, No. 5: 509 (2014); https://doi.org/10.1134/S1061933X14050020
  38. D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, Synthesis of carbon nanostructures in gaseous and liquid medium, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
  39. S.Y. Zaginaichenko, D.V. Schur, and Z.A. Matysina, The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials, Carbon, 41, No. 7: 1349 (2003). https://doi.org/10.1016/S0008-6223(03)00059-9
  40. L.Z. Boguslavskii, A.D. Rud’, I.M. Kir’yan, N.S. Nazarova, and D.V. Vinnichenko, Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing, Surf. Engin. Appl. Electrochem., 51, No. 2: 105 (2015); https://doi.org/10.3103/S1068375515020027
  41. Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Electric arc methods to synthesize carbon nanostructures, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
  42. O.M. Yakymchuk, O.M. Perepelytsina, A.D. Rud, I.M. Kirian, and M.V. Sydorenko, Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells, Phys. Status Solidi A, 211, No. 12: 2778 (2014); https://doi.org/10.1002/pssa.201431358
  43. N.T. Kartel, N.V. Gerasimenko, N.N. Tsyba, A.D. Nikolaichuk, and G.A. Kovtun, Synthesis and study of carbon sorbent prepared from polyethylene terephthalate, Rus. J. Appl. Chem., 74, No. 10: 1765 (2001); https://doi.org/10.1023/A:1014894211046
  44. Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
  45. V.I. Oreshkin, S.A. Chaikovskii, N.A. Labetskaya, Y.F. Ivanov, K.V. Khishchenko, P.R. Levashov, N.I. Kuskova, and A.D. Rud’, Phase transformations of carbon under extreme energy action, Tech. Phys., 57, No. 2: 198 (2012); https://doi.org/10.1134/S106378421202017X
  46. A.D. Rud, A.M. Lakhnik, S.S. Mikhailova, O.V. Karban, D.V. Surnin, and F.Z. Gilmutdinov, Structure of Mg–C nanocomposites produced by mechano-chemical synthesis, J. Alloys Compd., 509, Suppl. 2: S592 (2011); https://doi.org/10.1016/j.jallcom.2010.10.155
  47. O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
  48. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Plasmochemical synthesis of platinum-containing carbon nanostructures suitable for CJP 3D-printing, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
  49. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, and O.O. Havryliuk, Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology, Chem., Phys. Technol. Surf., 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
  50. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, and A.D. Zolotarenko, Electric conductive composites based on metal oxides and carbon nanostructures, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  51. O. Pylypova, O. Havryliuk, S. Antonin, A. Evtukh, V. Skryshevsky, I. Ivanov, and S. Shmahlii, Influence of nanostructure geometry on light trapping in solar cells, Appl. Nanosci., 12, No. 3: 769 (2022); https://doi.org/10.1007/s13204-021-01699-6
  52. O.Y. Semchuk, A.A. Biliuk, O.O. Havryliuk, and A.I. Biliuk, Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance, Appl. Surf. Sci. Adv., 3: 100057 (2021); https://doi.org/10.1016/j.apsadv.2021.100057
  53. O.O. Havryliuk, A.A. Evtukh, O.V. Pylypova, O.Y. Semchuk, I.I. Ivanov, and V.F. Zabolotnyi, Plasmonic enhancement of light to improve the parameters of solar cells, Appl. Nanosci., 10, No. 12: 4759 (2020); https://doi.org/10.1007/s13204-020-01299-w
  54. S.S. Stavitskaya, T.I. Mironyuk, N.T. Kartel, and V.V. Strelko, Sorption characteristics of “food fibers” in secondary products of processing of vegetable raw materials, Russ. J. Appl. Chem., 74, No. 4: 592 (2001); https://doi.org/10.1023/A:1012706531317
  55. V.M. Gun’ko, V.V. Turov, T.V. Krupska, and E.M. Pakhlov, Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture, Chem. Phys. Lett., 690: 25 (2017); https://doi.org/10.1016/j.cplett.2017.10.039
  56. O.I. Zakutevskii, T.S. Psareva, V.V. Strelko, and N.T. Kartel’, Sorption of U(VI) from aqueous solutions with carbon sorbents, Radiochemistry, 49, No. 1: 67 (2007); https://doi.org/10.1134/S1066362207010110
  57. I. Protsak, V.M. Gun’ko, V.V. Turov, T.V. Krupska, E.M. Pakhlov, D. Zhang, W. Dong, and Z. Le, Nanostructured polymethylsiloxane/fumed silica blends, Materials, 12, No. 15: 2409 (2019); https://doi.org/10.3390/ma12152409
  58. M. Kartel and V. Galysh, New composite sorbents for caesium and strontium ions sorption, Chem. J. Moldova, 12, No. 1: 37 (2017); https://doi.org/10.19261/cjm.2017.401
  59. V.M. Gun’ko, V.V. Turov, I.S. Protsak, T.V. Krupska, E.M. Pakhlov, and M.D. Tsapko, Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas, Colloids Surf. A, 570: 471(2019); https://doi.org/10.1016/j.colsurfa.2019.03.056
  60. V. Galysh, O. Sevastyanova, M. Kartel, M.E. Lindström, and Y. Gornikov, Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents, J. Therm. Anal. Calorim., 128, No. 2: 1019 (2017); https://doi.org/10.1007/s10973-016-5984-7
  61. V.V. Turov, V.M. Gun’ko, T.V. Krupska, M.V. Borysenko, and M.T. Kartel, Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends, J. Colloid Interface Sci., 588: 70 (2021); https://doi.org/10.1016/j.jcis.2020.12.065
  62. M.T. Gabdullin, K.K. Khamitova, D.V. Ismailov, M.N. Sultangazina, D.S. Kerimbekov, S.S. Yegemova, A. Chernoshtan, and D.V. Schur, Use of nanostructured materials for the sorption of heavy metals ions, IOP Conf. Ser.: Mat. Sci. Eng., 511, No. 1: 012044 (2019); https://doi.org/10.1088/1757-899X/511/1/012044
  63. Yu.I. Sementsov, G.P. Prikhod’ko, A.V. Melezhik, T.A. Aleksyeyeva, and M.T. Kartel, Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites, Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications, p. 347 (2010); https://doi.org/10.1007/978-90-481-2309-4_27
  64. V.M. Gun’ko, T. Lupascu, T.V. Krupska, A.P. Golovan, E.M. Pakhlov, and V.V. Turov, Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas, Colloids Surf. A, 531: 9 (2017); https://doi.org/10.1016/j.colsurfa.2017.07.084
  65. K.K. Khamitova, B.A. Kayupov, S.S. Yegemova, M.T. Gabdullin, Kh.A. Abdullin, D.V. Ismailov, and D.S. Kerimbekov, The use of fullerenes as a biologically active molecule, Int. J. Nanotechnol., 16, Nos. 1–3: 100 (2019); https://doi.org/10.1504/ijnt.2019.102396
  66. V.M. Gun’ko, V.V. Turov, T.V. Krupska, and M.D. Tsapko, Interactions of human serum albumin with doxorubicin in different media, Chem. Phys., 483–484: 26 (2017); https://doi.org/10.1016/j.chemphys.2016.11.007
  67. V.M. Gun'ko, V.V. Turov, T.V. Krupska, I.S. Protsak, M.V. Borysenko, and E.M. Pakhlov, Polymethylsiloxane alone and in composition with nanosilica under various conditions, J. Colloid Interface Sci., 541: 213 (2019); https://doi.org/10.1016/j.jcis.2019.01.102
  68. T.V. Krupska, A.A. Turova, V.M. Un’ko, and V.V. Turov, Influence of highly dispersed silica on physiological activity of yeast cells, Biopolymers and Cell, 25, No. 4: 290 (2009); https://doi.org/10.7124/bc.0007E8
  69. L.M. Ushakova, K.I. Ivanenko, N.V. Sigareva, M.І. Terets, M.Т. Kartel, and Yu.І. Sementsov, Influence of nanofiller on the structure and properties of macromolecular compounds, Phys. Chem. Solid State, 23, No. 2: 394 (2022); https://doi.org/10.15330/pcss.23.2.394-400
  70. Y. Sementsov, G. Prikhod’ko, M. Kartel, M. Tsebrenko, T. Aleksyeyeva, and N. Ulyanchychi, Carbon nanotubes filled composite materials, NATO Science for Peace and Security Series C: Environmental Security, 2: 183 (2011); https://doi.org/10.1007/978-94-007-0899-0_16
  71. E. Harea, R. Stoček, L. Storozhuk, Y. Sementsov, and N. Kartel, Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers, Appl. Nanosci., 9, No. 5: 899 (2019); https://doi.org/10.1007/s13204-018-0797-6
  72. V.M. Gun’ko, V.V. Turov, I. Protsak, T.V. Krupska, E.M. Pakhlov, and D. Zhang, Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas, Colloids Interface Sci. Commun., 35: 100251 (2020); https://doi.org/10.1016/j.colcom.2020.100251
  73. S. Tkachenko, D. Brodnikovskyi, J. Cizek, P. Komarov, Ye. Brodnikovskyi, Ya. Tymoshenko, S. Csaki, M. Pinchuk, O. Vasylyev, L. Čelko, M. Gadzyra, and T. Chraska, Novel Ti–Si–C composites for SOFC interconnect materials: Production optimization, Ceram. Int., 48, No. 19 (Pt. A): 27785 (2022); https://doi.org/10.1016/j.ceramint.2022.06.081
  74. V. Podhurska, D. Brodnikovskyi, B. Vasyliv, M. Gadzyra, S. Tkachenko, L. Čelko, O. Ostash, I. Brodnikovska, Ye. Brodnikovskyi, and O. Vasylyev, Ti–Si–C in-situ Composite as a Potential Material for Lightweight SOFC Interconnects: Promising Materials and Processes in Applied Electrochemistry, Monograph (Kyiv: KNUTD: 2020) p. 54; https://er.knutd.edu.ua/handle/123456789/17000
  75. Y. Brodnikovskyi, N. McDonald, I. Polishko, D. Brodnikovskyi, I. Brodnikovska, M. Brychevskyi, L. Kovalenko, O. Vasylyev, A. Belous, and R. Steinberger-Wilckens, Properties of 10Sc1CeSZ-3.5YSZ(33-, 40-, 50-wt.%) composite ceramics for SOFC application, Mater. Today: Proc., 6, Pt. 2: 26 (2019); https://doi.org/10.1016/j.matpr.2018.10.071
  76. I. Polishko, S. Ivanchenko, R. Horda, Ye. Brodnikovskyi, N. Lysunenko, and L. Kovalenko, Tape casted SOFC based on Ukrainian 8YSZ powder, Mater. Today: Proc., 6, Pt. 2: 237 (2019); https://doi.org/10.1016/j.matpr.2018.10.100
  77. A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, Structural and methodical features of the installation for investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007) p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
  78. D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60, Int. J. Hydrogen Energy, 33, No. 13: 3330 (2008); https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.03.064
  79. D.V. Schur, M.T. Gabdullin, S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
  80. A.M. Lakhnik, I.M. Kirian, and A.D. Rud, The Mg/MAX-phase composite for hydrogen storage, Int. J. Hydrogen Energy, 47, No. 11: 7274 (2022); https://doi.org/10.1016/j.ijhydene.2021.02.081
  81. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, Hydrogenation of fullerite C60 in gaseous phase, NATO Science for Peace and Security Series C: Environmental Security (Dordrecht: Springer: 2011) p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
  82. V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko, and K.A. Meleshevich, Selection of the hydrogen-sorbing material for hydrogen accumulators, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  83. D.V. Schur, M.T. Gabdullin, D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  84. Z.A. Matysina and D.V. Schur, Phase transformations α → β → γ → δ → ε in titanium hydride TiHx with increase in hydrogen concentration, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  85. V.I. Trefilov, D.V. Schur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, The solar furnaces for scientific and technological investigation, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
  86. D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Niobium as a construction material for a hydrogen energy system, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
  87. D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Studies of the hydride formation mechanism in metals, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
  88. Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/10.1016/j.ijhydene.2021.05.069
  89. Z.A. Matysina, O.S. Pogorelova, S.Yu. Zaginaichenko, and D.V. Schur, The surface energy of crystalline CuZn and FeAl alloys, J. Phys. Chem. Sol., 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  90. A.D. Rud, U. Schmidt, G.M. Zelinska, A.M. Lakhnik, G.Ya. Kolbasov, and M.O. Danilov, Atomic structure and hydrogen storage properties of amorphous–quasicrystalline Zr–Cu–Ni–Al melt-spun ribbons, J. Non-Cryst. Sol., 353, Nos. 32–40: 3434 (2007); https://doi.org/10.1016/j.jnoncrysol.2007.05.095
  91. Z.A. Matysina, S.Yu. Zaginaichenko, and D.V. Schur, Hydrogen solubility in alloys under pressure, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  92. D.V. Schur, S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, Hydrogen in lanthan–nickel storage alloys, J. Alloys Comp., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
  93. Yu.M. Lytvynenko and D.V. Schur, Utilization the concentrated solar energy for process of deformation of sheet metal, Renewable Energy, 16, Nos. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  94. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Shchur, M.T. Gabdullin, Sorption properties of iron–magnesium and nickel–magnesium Mg2FeH6 and Mg2NiH4 hydrides, Rus. Phys. J., 59, No. 2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
  95. A.D. Rud, U. Schmidt, G.M. Zelinska, A.M. Lakhnik, A.E.Perekos, G.Ya. Kolbasov, and M.O. Danilov, Peculiarities of structural state and hydrogen storage properties of Ti–Zr–Ni based intermetallic compounds, J. Alloys Comp., 404–406: 515 (2005); https://doi.org/10.1016/j.jallcom.2004.12.174
  96. S.Y. Zaginaichenko, Z.A. Matysina, L.O. Teslenko, and A. Veziroglu, The structural vacancies in palladium hydride. Phase diagram, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
  97. S.Y. Zaginaichenko, D.A. Zaritskii, D.V. Schur, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
  98. Z.A. Matysina, S.Y. Zaginaichenko, and D.V. Schur, Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-type structure, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
  99. S.A. Tikhotskii, I.V. Fokin , and D.V. Schur, Traveltime seismic tomography with adaptive wavelet parameterization, Izv. Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  100. N.S. Kurnakov, Introduction to Physicochemical Analysis (Leningrad: Academy of Sciences of the USSR: 1940), p. 564.
  101. C. Smithells, Gases and Metals (Leningrad: Metallurgizdat: 1940), p. 228.
  102. L.S. Darken and P.V. Guppy, Physical Chemistry of Metals (Moskva: Metallurgizdat: 1960), p. 582.
  103. V.B. Vyhodets, V.A. Goltsov, and P.V. Geld, Physics of Metals and Metallography, 26: 933 (1968).
  104. V.A. Goltsov, V.B. Vyhodets, P.V. Geld, and T.A. Krylov, Physics of Metals and Metallography, 30: 657 (1970).
  105. V.B. Vyhodets, V.A. Goltsov, and P.V. Geld, Uspekhi Fiz. Nauk, 15: 107 (1970).
  106. V.B. Vyhodets, V.A. Goltsov, and P.V. Geld, Solid State Physics, 12: 2692 (1970).
  107. A.A. Popov, Problems of Metallurgy and Heat Treatment (Moskva: Mashgiz: 1960).
  108. I.I. Kornilov, Proceedings of the Academy of Sciences of the USSR. Department of Chemical Sciences, 4: 337 (1947).
  109. Н. Bűckle, Rev. Met., 54: 9 (1957).
  110. I.A. Zelenkov and E.N. Martynchuk, News of the Academy of Sciences of the Ukrainian SSR: Metallophysics, vol. 50 (Kyiv: 1974).
  111. E. Воrelius, Ann. d. Physic., 83: 121 (1927); https://doi.org/10.1515/juru.1927.1927.4.121
  112. L. Vegard, Zeit. f. Pliysik, 5: 17 (1921).
  113. L. Vegard, Zeit. f. Kristall, 67: 148 (1928); https://doi.org/10.1524/zkri.1928.67.1.148
  114. D. Stockdale, J. Inst. Metals, 66: 287 (1940).
  115. E.O. Kirkendall, Trans. АІМЕ, 147: 104 (1942).
  116. E.A. Owen, J. Inst. Metals, 73: 471 (1947).
  117. H. Axon and W. Hume-Rotherу, Proc. Roy. Soc. A, 193: 1 (1948).
  118. G.V. Raynor, Trans. Faraday. Soc., 45: 698 (1949); https://doi.org/10.1039/tf9494500698
  119. J. Friedel, Phil. Mag., 46, Iss. 7: 514 (1955); https://doi.org/10.1080/14786440508520587
  120. J.D. Eshelby, Solid State Physics, 3: 79 (1959).
  121. B. Warren, B. Averbach and B.J. Roberts, Appl. Phys., 22: 1493 (1951).
  122. A.I. Bradley and A.H. Jay, Proc. Roy. Soc., 136: 210 (1932); https://doi.org/10.1098/rspa.1932.0075
  123. W. Gordy, Phys. Rev., 69: 604 (1946); https://doi.org/10.1103/PhysRev.69.604
  124. S.A. Pogodin and V.I. Mikheev, Izv. SFHA, 14: 283 (1941); https://doi.org/10.1292/jvms1928.14.5_283
  125. V.G. Kuznetsov, Izv. SFHA, 16: 232 (1946).
  126. D.M. Sivertsen and M.E. Nicholson, Structure and Properties of Solid Solutions: Metallurgy (1964).
  127. J. Nicholas, Proc. Phys. Soc. A, 66: 201 (1953); https://doi.org/10.1088/0370-1298/66/3/301
  128. K. Huang, Proc. Roy. Soc. A, 190: 102 (1947); https://doi.org/10.1098/rspa.1947.0064
  129. D.M. Sivertsen and M.E. Nicholson, Structure and Properties of Solid Solutions: Metallurgy (1955).
  130. L. Landau and E. Lifshitz, Statistical Physics (Pergamon–Elsevier: 1980).
  131. M.A. Krivoglaz, Journal of Technical Physics, 24: 1077 (1954).
  132. M.A. Krivoglaz, Physics of Metals and Metal Science, 1: 393 (1955).
  133. N.V. Ageev, Journal of Inorganic Chemistry AN USSR, 3: 557 (1958).
  134. V.A. Nemilov and T.A. Vidusova, Institute of General and Inorganic Chemistry, USSR Academy of Sciences: News from the Platinum Sector, 17: 11 (1940).
  135. V.V. Ageev, Chemistry of Metal Alloys (Publishing House of the Academy of Sciences of the USSR: 1941), p. 122.
  136. V.I. Mikheev, Proceedings of the Academy of Sciences of the USSR: Department of Chemical Sciences, 6: 396 (1944).
  137. B.K. Wulf, Physics of Metals and Metallography, 3: 97 (1956).
  138. V. Hume-Rothery and G.V. Raynor, Structure of Metals and Alloys (Moskva: Metallurgizdat: 1959), p. 391.
  139. B.K. Vul’f, Ternary intermetallic compounds, Russ. Chem. Rev., 29, No. 6: 364 (1960); https://doi.org/10.1070/rc1960v029n06abeh001238
  140. G.B. Boky, B.K. Wulf, and N.L. Smirnova, Journal of Structural Chemistry (Publishing House of the USSR Academy of Sciences), 2, No.1: 74 (1961).
  141. G.V. Samsonov, Powder Metallurgy (Publishing house of the Academy of Sciences of the USSR), 2: 3 (1962).
  142. B.K. Vul’f, Triple Metallic Phases in Alloys (Moskva: Metallurgy: 1964).
  143. Z.A. Matysina and E.A. Matysina, Uspekhi Fiz. Nauk, 14: 1643 (1969).
  144. Z.A. Matysina, Izvestiya vuzov SSSR: Fizika, 10: 93 (1971).
  145. Z.A. Matysina and E.A. Matysina, Uspekhi Fiz. Nauk, 17: 14 (1972).
  146. Z.A. Matysina, Uspekhi Fiz. Nauk, 14, No. 10: 1638 (1969).
  147. Z.A. Matysina, Uspekhi Fiz. Nauk, 17: 9 (1972).
  148. Z.A. Matysina and A.A. Smirnov, Problems of Physics of Metals and Metallurgy, 19: 136 (1964).
  149. Z.A. Matysina and A.A. Smirnov, Problems of Physics of Metals and Metallurgy, 19: 136 (1964).
  150. Z.A. Matysina, E.A. Matysina, and A.L. Chikarenko, Mechanism and Kinetics of Crystallization (Minsk: 1973).
  151. V.I. Ryzhkov and A.A. Smirnov, Physics and Mathematics Journal, 18: 670 (1964).
  152. A.K. Buzzard, V.I. Ryzhkov, and A.A. Smirnov, Metallofizika, 3: 22 (1965).
  153. A.K. Kanyuka and A.A. Smirnov, Uspekhi Fiz. Nauk, 14: 1626 (1969).
  154. V.I. Ryzhkov, Reports of the Academy of Sciences of the Ukrainian SSR, No. 3: 277 (1970).
  155. V.A. Goltsov, P.V. Geld, Yu.P. Simakov, M.M. Steinberg, and V.A. Native, Diffusion Processes in Metals, 17: 92 (1969).
  156. Т.М. Radchenko, Pressure effect on order–disorder phase transformation temperature in L12- and D019-type superstructures, Metallofiz. Noveishie Tekhnol., 30, Spec. Iss.: 195 (2008).
  157. Т.М. Radchenko and V.А. Tatarenko, Fe–Ni alloys at high pressures and temperatures: statistical thermodynamics and kinetics of the L12 or D019 atomic order, Usp. Fiz. Met., 9, No. 1: 1 (2008); https://doi.org/10.15407/ufm.09.01.001
  158. V.A. Tatarenko and T.M. Radchenko, Direct and indirect methods of the analysis of interatomic interaction and kinetics of a relaxation of the short-range order in close-packed substitutional (interstitial) solid solutions, Usp. Fiz. Met., 3, No. 2: 111 (2002); https://doi.org/10.15407/ufm.03.02.111
  159. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Kinetics of short-range ordering of substitutional solid solutions (according to data on a scattering of various kinds of waves). I. Microscopic parameters of migration of atoms within f.c.c.-Ni–Mo in Fourier-representation, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004).
  160. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Kinetics of short-range ordering of substitutional solid solutions (according to data on a scattering of various kinds of waves). II. Parameters of atomic microdiffusion within f.c.c.-Ni–Mo, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004)
  161. V.A. Tatarenko and T.M. Radchenko, Diffusive relaxation of short-range order parameters and the time evolution of diffuse radiation scattering in solid solutions, Defect Diffus. Forum, 194–199, Pt. 1: 183 (2001); https://doi.org/10.4028/www.scientific.net/DDF.194-199.183
  162. T.M. Radchenko and V.A. Tatarenko, Comments concerning parameters of the short-range order evolution determined from the data on kinetics of a heat-capacity relaxation for Lu–H alloy, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229; https://doi.org/10.1007/978-1-4020-5514-0_28
  163. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-empirical parameterization of interatomic interactions and kinetics of the atomic ordering in Ni–Fe–C permalloys and elinvars, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  164. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  165. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Statistical-thermodynamics and ordering kinetics of D019-type phase: application of the models for h.c.p.-Ti–Al alloy, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/SSP.138.283
  166. V.A. Tatarenko and T.M. Radchenko, The application of radiation diffuse scattering to the calculation of phase diagrams of f.c.c. substitutional alloys, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  167. T.M. Radchenko and V.A. Tatarenko, Atomic-ordering kinetics and diffusivities in Ni–Fe permalloy, Defect Diffus. Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.525
  168. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  169. T.M. Radchenko and V.A. Tatarenko, Kinetics of the orientational long-range ordering of interstitial hydrogen atoms in metals having hexagonal close-packed structure, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science + Business Media B.V.: 2008), p. 489; https://doi.org/10.1007/978-1-4020-8898-8_62
  170. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Semi-empirical parameterization of interatomic interactions, which is based on statistical-thermodynamic analysis of data on phase equilibriums in b.c.c.-Fe–Co alloy. I. Primary ordering, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).