Aluminizing of Metal Surfaces by Electric-Spark Alloying

V. B. Tarelnyk$^1$, O. P. Gaponova$^2$, N. V. Tarelnyk$^1$, and O. M. Myslyvchenko$^3$

$^1$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^2$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^3$I.M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, 3, Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received 26.01.2023; final version — 31.05.2023 Download PDF logo PDF

The analysis of the influence of the parameters of electrospark alloying with an aluminium electrode on the quality (roughness, microstructure of the coating, its continuity, phase composition, and microhardness) of the aluminized layer is presented. The effect of finishing methods after aluminizing is evaluated. The heat resistance of the obtained coatings is studied. Metallographic analysis shows that the coating consists of three sections: a ‘white’ layer, a diffusion zone, and the base metal. With an increase in the discharge energy, such quality parameters of the surface layer as thickness, microhardness of both a ‘white’ layer and a transition zone, and roughness are increased. The continuity of a ‘white’ layer at the discharge energy Wp = 0.52 J is low (of 50–60%); with a subsequent increase in the discharge energy, it increases and, at Wp = 6.8 J, it is of 100%. An increase in the discharge energy during electric-spark alloying (ESA) leads to a change in the chemical and phase compositions of the layer: at low discharge energies, a layer is formed, consisting mainly of α-Fe and aluminium oxides. As Wp increases, the layer consists of iron and aluminium intermetallic compounds, as well as free aluminium, that is confirmed by the data of local x-ray microanalysis. For practical application, it is possible to recommend the process of aluminizing by the ESA method, using the modes (discharge energy in the range of 4.6–6.8 J and productivity of 2.0–3.0 cm2/min). Such process provides the formation of a ‘white’ layer with a thickness of 70–130 µm, microhardness of 5000–7500 MPa, roughness (Ra) of 6–9 µm, and continuity of 95–100%. In order to increase the thickness of the aluminized layer, it is recommended to preliminarily apply grease containing aluminium powder to the steel surface and, without waiting for it to dry, carry out ESA with an aluminium electrode. In this case, the coating continuity is of 100%, the layer thickness is of up to 200 µm, and the microhardness is of 4500 MPa. The paper presents the results of study of the quality parameters of multicomponent aluminium-containing coatings of Al–S, Al–C–S, and Al–C–B systems. Replacing the aluminium electrode with graphite one leads to a decrease in the thickness and continuity of a ‘white’ layer, respectively, to 50 µm and 30%. In turn, the microhardness on the surface increases to 9000 MPa. The addition of 0.7 boron to the consistency substance leads to an increase in the thickness and continuity of a ‘white’ layer, respectively, up to 60 µm and 70%. The microhardness on the surface rises to 12000 MPa. In order to reduce the roughness of the surface layer and to obtain continuous coatings, it is recommended to carry out ESA with an aluminium electrode, but at lower modes.

Keywords: electrospark alloying, coating, aluminizing, microhardness, continuity, roughness, structure, x-ray diffraction analysis, x-ray spectral analysis.


Citation: V. B. Tarelnyk, O. P. Gaponova, N. V. Tarelnyk, and O. M. Myslyvchenko, Aluminizing of Metal Surfaces by Electric-Spark Alloying, Progress in Physics of Metals, 24, No. 2: 282–318 (2023)

  1. V. Tarelnyk, V. Martsynkovskyy, О. Gaponova, Ie. Konoplianchenko, M. Dovzyk, N. Tarelnyk, and S. Gorovoy, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012049 (2017);­899X/233/1/012049
  2. V. Martsynkovskyy, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, A. Zhukov, P. Kurp, P. Furmańczyk, and N. Tarelnyk, Electromachinihg-18: American Institute of Physics Conf. Proceedings (May 9–11, 2018, Bydgoszcz), p. 020017;
  3. V. Tarelnyk, Ie. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Advances in Design, Simulation and Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering, (Cham: Springer: 2019), 382;
  4. V.B. Tarelnik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical Petroleum Engineering, 53, Nos. 3–4: 266 (2017);
  5. V.B. Tarelnik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical Petroleum Engineering, 53, Nos. 5–6: 385 (2017);
  6. T.V. Mosina, Novye Ogneupory (New Refractories), 9: 61 (2013) (in Russian);
  7. P. Rohatgi, JOM, 43: 10 (1991);
  8. A. Zahorulko, C. Kundera, and S. Hudkov, IOP Conference Series: Materials Science and Engineering, 233 (1): 012039 (2017);
  9. I.P. Shatskyi, V.V. Perepichka, and L.Ya. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian);
  10. M.S. Storozhenko, A.P. Umanskii, A.E. Terentiev, and I.M. Zakiev, Powder Metall. Met. Ceram., 56, Nos. 1–2: 60 (2017);
  11. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O. Terentiev, Yu. Gubin, O Kostenko, and I. Martsenyuk, Powder Metall. Met. Ceram., 59, Nos. 7–8: 434 (2020);
  12. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022);
  13. B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotina, O.Yu. Rebrov, O.M. Rebrova, and V.I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022);
  14. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, No. 5 (79): 53 (2016) (in Ukrainian);
  15. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2: 9321900 (2020);
  16. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022);
  17. М.М. Student, V.M. Dovhunyk V.M., Posuvailo, I.V. Koval’chuk, and V.M. Hvozdets’kyi, Materials Science, 53, No. 3: 359 (2017);
  18. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83, (2022);
  19. M. Bembenek, T. Mandziy, I. Ivasenko, O. Berehulyak, R. Vorobel, Z. Slobodyan, and L. Ropyak, Sensors, 22, No. 19: 7600 (2022);
  20. F.A.P. Fernandes, S.C. Heck, R.G. Pereira, and A. Lombardi-Neto, Journal of Achievements in Materials and Manufacturing Engineering, 40, No. 2: 175 (2010).
  21. Shu-Hung Yeh, Liu-Ho Chiu, and Heng Chang, Engineering, Scientific Research Publishing, 9, No. 3: 942 (2011).
  22. S. Ben Slima, Materials Sciences and Applications, Scientific Research Publishing, 9, No. 3: 640 (2012).
  23. V.R. Ryabov, Steel Aluminizing (Moskva: Metallurgiya: 1973), р. 240.
  24. M. Brochu, J.G. Portillo, J. Milligan, and D.W. Heard, The Open Surface Science Journal, 3: 105 (2011).
  25. I.G. Brodova, I.G. Shirinkina, and Yu. P. Zaikov, Physics of Metals and Metal Science, 116, No. 9: 928 (2015).
  26. V.F. Danenko, L.M. Gurevich, and G.V. Ponkratova, News of Volg GTU. [Problems of Material Science, Welding and Strength in Mechanical Engineering: Interuniversity. Collection of Scientific Articles], 10, No. 9 (136): 30 (2014).
  27. V.I. Muraviev, P.V. Bakhmatov, N.G. Lonchakov, and S.Z. Chinilov, Hardening Technologies and Coatings, No. 11: 25 (2013).
  28. M.A. Elizavetin, and E.A. Satel, Technological Ways to Improve the Durability of Machines (Moskva: Mashinostroenie: 1969), р. 400.
  29. V.I. Kuzmin, A.A. Mikhal’chenko, and O.B. Kovalev, Thermal Spray Technology, 21, No. 1: 159 (2012).
  30. A.D. Pogrebnjak, V.I. Ivashchenko, P.L Skrynskyy, O.V. Bondar, P. Konarski, K. Zaleski, S. Jurga, and E. Coy, Composites Part B-Engineering, 142: 85 (2018).
  31. A.D. Pogrebnjak, A.A. Bagdasaryan, P. Horodek, V. Tarelnyk, V.V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V.M. Beresnev, Materials Letters, 303: 130548, (2021);
  32. G. Morand, P. Chevallier, L. Bonilla-Gameros, S. Turgeon, M. Cloutier, M. Da Silva Pires, A. Sarkissian, M. Tatoulian, L. Houssiau, and D. Mantovani, Surface and Interface Analysis, 53, No. 7: 658 (2021);
  33. G. Maistro, S. Kante, L. Nyborg, and Y. Cao, Surfaces and Interfaces, 24: 101093;
  34. V.G. Smelov, A.V. Sotov, and S.A. Kosirev, ARPN Journal of Engineering and Applied Sciences, 9, No. 10: 1854 (2014).
  35. B. Antoszewski, IOP Conf. Ser.: Mater. Sci. Eng., 233 : 012036 (2017);
  36. I. Pliszka and N. Radek, Procedia Engineering, 192: 707 (2017);
  37. B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplyanchenko, N.S. Yevtushenko, and V.O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian);
  38. D.N. Korotaev, Tekhnologicheskie Vozmozhnosti Formirovaniya Iznosostoikikh Nanostructur Ehlektroiskrovym Legirovaniem [Technological Possibilities of Wear-Resistant Nanostructure Formation by Electric-Spark Alloying] (Omsk: SibADI: 2009) (in Russian).
  39. A.D. Verkhoturov, Formirovanie Poverkhnostnogo Sloya Metallov pri Ehlektroiskrovom Legirovanii [Formation of the Metal Surface Layer by Electric-Spark Alloying] (Vladivostok: Dal’nauka: 1995) (in Russian).
  40. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Yu.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, and B.A. Sarzhanov, Surf. Engin. Appl. Electrochem, 57: 173 (2021);
  41. V.B. Tarelnyk, A.V. Paustovskii, and Y.G Tkachenko, Electrode Materials for Composite and Multilayer Electrospark-Deposited Coatings from Ni–Cr and WC–Co Alloys and Metals. Powder Metall Met Ceram, 55: 585 (2017);
  42. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (Cham: Springer: 2020);
  43. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, E.V. Konoplyanchenko, and B. Antoshevskii, Surface Engineering and Applied Electrochemistry, 53, No. 3: 285 (2017);
  44. A.A. Ishchenko, Technological Bases the Restoration of Industrial Equipment with Modern Polymeric Materials (Mariupol: PSTU: 2007), р. 250.
  45. V.S. Martsynkovskyi, Sposib Obrobky Vkladyshiv Pidshypnykiv Kovzannia [The Method of Processing the Liners of Sliding Bearings]: Patent 77906 UA. IPC, B23Н1/00 (Bul. 1) (2007) (in Ukrainian).
  46. V.S. Martsynkovskyi, V.B. Tarelnyk, O.H. Pavlov, and A.O. Ishchenko, Sposib Vidnovlennia Znoshenykh Poverkhon Metalevykh Detalei (Varianty) [The Method of Restoration of Worn Surfaces of Metal Parts (Variants)]: Patent 104664 UA. (Bul. 4) (2014) (in Ukrainian).
  47. V.B. Tarel’nik, E.V. Konoplyanchenko, P.V. Kosenko, and V.S. Martsinkovskii, Chemical and Petroleum Engineering, 53, Nos. 7–8: 540 (2017);
  48. V. Dzyura, P. Maruschak, and O. Prentkovskis, Algorithms, 14, No. 2: 46 (2021);
  49. Yu.G. Schneider, Precision Engineering, 6, No. 4: 219 (1984);
  50. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012);
  51. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012);
  52. S.F. Vdovin, E.S. Makhnev, N.L. Mineeva, V.V. Tarasov, A.P. Andreev, Elektron. Obrab. Mater., No. 6: 15 (1988) (in Russian).
  53. S.M. Reshetnikov and S.F. Vdovin, Elektronnaya Obrabotka Materialov, 3: 33 (1977).
  54. A.V. Koval’, Surf. Engin. Appl. Electrochem., 58: 176 (2022);
  55. S.A. Pyachin, A.A. Burkov, and V.S. Komarova, Journal of Surface Investigation X-Ray Synchrotron and Neutron Studies, 6: 16 (2013).
  56. V.B. Tarelnyk, V.S. Martsynkovskyi, O.P. Gaponova, Ye. Konoplianchenko, N.V. Tarelnyk, M.Yu. Dumanchuk, M.V. Honcharenko, B. Antoshevskyi, and Ch. Kundera, Sposib Obrobky Poverkhon Stalevykh Detalei [The Method of Processing the Surfaces of Steel Parts]: Patent 121346 UA. IPC B23H 1/06 (2006.01), B23H 9/00, C23C 12/02 (2006.01) (Bul. 9) (2020) (in Ukrainian).
  57. O. Gaponova, Cz. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering (Singapore: Springer: 2019);
  58. G.V. Kirik, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, and B. Antoshevsky, Powder Metallurgy and Metal Ceramics, 56, Nos. 11–12: 688 (2018);
  59. V.B. Tarelnyk , O.P. Gaponova, and O.M. Myslyvchenko, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1377 (2019); mfint.41.10.1377.
  60. O.A. Bannykh, P.B. Budberg, and S.P. Alisova, Diagrams of the State of Dual and Multicomponent Systems Based on Iron: Papers. (Moskva: Metallurgy: 1986), р. 440 (in Russian).
  61. Y.I. Mulyn and A.D. Verkhoturov, Electrospark Alloying of Working Surfaces of Tools and Machine Parts with Electrode Materials Obtained from Mineral Raw Materials (Vladivostok: Dal’nauka: 1999), р. 110 (in Russian).
  62. D.V. Mironov, V.M. Mironov, V.F. Mazanko, D.S. Gertsriken, and P.V. Peretyatku, Resource-Efficient Technologies, 3: 19 (2018);
  63. V.F. Mazanko, D.S. Hertsryken, and V.M. Myronov, International Conference ‘Interaction of Radiation with Solids’ (Sep. 23–25, 2015, Minsk), р. 240.
  64. V.B. Tarelnik, B. Antoshevsky, and V.S. Martsinkovsky et al., Cementation by Electroerosive Alloying (Sumy: University Book: 2015), р. 233 (in Ukrainian).
  65. V.S. Martsynkovskyi, V.B. Tarelnyk, and M.P. Bratushchak, Sposib Tsementatsii Stalevykh Detalei Elektroeroziinym Leguvanniam [Method for Carburizing of Steel Parts by Electroerosion Alloying], Patent 101715 UA. IPC 23N 9/00 (Bul., 8) (2013) (in Ukrainian).
  66. A.N. Minkevich, Chemical and Thermal Treatment of Metals and Alloys, (Moskva: Mashinostroyenie: 1965), p. 493 (in Russian).
  67. L.D. Plyatsuk, V.B. Tarelnyk, Cz. Kundera, O.V. Radionov, O.P. Gaponova. Journal of Engineering Sciences, 5, No. 1: 16 (2018).
  68. S.N. Khimukhin, Structure and Properties of Metals and Alloys under Electrospark Action (Khabarovsk: Pacific Publishing House. State University: 2015), p. 127 (in Russian).
  69. N.B. Stavitskaya and B.I. Stavitsky, Electronic Processing of Materials, 1: 9 (1980).
  70. L.S. Palatnik, DAN USSR, 89: 455 ( 1953).
  71. R. Johnson and G. Sheldon, Journal of Vacuum Science& Technology A, 4, No. 6: 2740 (1986).
  72. A.N. Ierusalimskaya, V.I. Samoilov, and P.I. Ulyakov, Structural Changes in Substance under the Influence of Laser Pulses of Light, 4: 26 (1968).
  73. V.B. Tarelnyk, E.V. Konoplyanchenko, O.P. Gaponova, and N.V. Tarelnik, Ensuring the Protection of the Surfaces of End Pulse Seals of Turbomachines by Forming Wear-Resistant Nanostructures: Monograph (Sumy: University Book: 2022), р. 252 (in Ukrainian).
  74. B. Antoszewski, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, P. Kurp, T. Zhylenko, and Ie. Konoplianchenko, Materials, 14: 739 (2021);