Effect of Controlled Rolling on the Structural and Phase Transformations

I. E. Volokitina$^1$, A. V. Volokitin$^2$, M. A. Latypova$^2$, V. V. Chigirinsky$^1$, and A. S. Kolesnikov$^3$

$^1$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38; 111500 Rudny, Kazakhstan
$^2$Karaganda Industrial University, Republic Ave., 30; 101400 Temirtau, Kazakhstan
$^3$M. Auezov South Kazakhstan University, Tauke Khan Ave., 5; 160012 Shymkent, Kazakhstan

Received 20.10.2022; final version — 24.01.2023 Download PDF logo PDF

The development of ferrous metallurgy is mainly due to the requirements of the leading metal-consuming industries to improve the performance properties of structural steels to increase the permissible loads, to reduce metal consumption and to improve the reliability of machines, structures, main gas pipelines, etc. With significant volumes of rolled metal production, reducing energy consumption and consuming raw materials during its production also come to the fore. In this regard, important and relevant works are the works aimed at creating the fundamentals of metals science and the development of new technologies that allow manufacturing the products with the required combination of properties directly in the rolling mill stream (excluding subsequent heat treatment) by purposefully controlling the processes of structure formation, as well as expanding the areas of the practical application of such technological schemes (in terms of brand and size assortment, rental destination, etc.). Such an approach makes it possible to increase the competitiveness of metal products determined by the achieved combination of metal characteristics, while reducing the cost of its production.

Keywords: plastic deformation, controlled rolling, structure, phase, transformations.

DOI: https://doi.org/10.15407/ufm.24.01.132

Citation: I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Effect of Controlled Rolling on the Structural and Phase Transformations, Progress in Physics of Metals, 24, No. 1: 132–156 (2023)

  1. I. Kozasu, C. Ouchi, T. Sampei, and T. Okita, Microalloying 75. Hystory and Theory (New York: 1977), p. 120.
  2. T. Tanaka, N. Tabata, T. Hatomura, and C. Shiga, Microalloying 75. Proc. Intern. Symp. Union Carbide Corp. (New York: 1977), p. 88.
  3. A. Naizabekov and I. Volokitina, Metallurgist, 64: 1029 (2021); https://doi.org/10.1007/s11015-021-01083-3
  4. I.E. Volokitina, Metal Science and Heat Treatment, 61: 234 (2019); https://doi.org/ 10.1007/s11041-019-00406-1
  5. K.J. Irvine, F.B. Pickering, and J.J. Gladman, JISI, 208: 717 (1970).
  6. A.J. DeArdo, G.A. Ratz, and P.J. Wray, Metallurgical Society of AIME: 682 (1981).
  7. H. Yada, Y. Matsuura, and T. Senuma, Japan Inst. Metals: 515 (1986).
  8. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chemical Technology and Metallurgy, 57: 809 (2022).
  9. R. Priestner, Rev. Met. Paris, 72, No. 4: 285 (1975). https://doi.org/10.1051/metal/197572040285
  10. R. Priestner, Y.M. Al-Horr, A.K Ibraheem, Materials Science and Technology, 18, No. 9: 973 (2002); https://doi.org/10.1179/026708302225004900
  11. R. Priestner and P.D. Hodgson, Materials Science and Technology, 8, No. 10: 849 (1992). https://doi.org/10.1179/mst.1992.8.10.849
  12. Y.I. Matrosov, Kontroliruemaya Prokatka — Mnogostadiinyy Protsess TMO Nizkolegirovannykh Stalei [Controlled Rolling — A Multistage Process of Low-Alloyed Steel Heat Treatment] (Steel: 1987) (in Russian).
  13. A. Naizabekov, S. Lezhnev, E. Panin, I. Volokitina, A. Arbuz, T. Koinov, and I. Mazur, J. Materials Engineering and Performance, 28: 200 (2019); https://doi.org/10.1007/s11665-018-3790-z
  14. W. Johnson, G.L. Baraya, and R.A.C. Slater, Int. J. Mechanical Sciences, 6: 409 (1964).
  15. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 1499 (2014). https://doi.org/10.1016/j.proeng.2014.10.180
  16. A. Volokitin, A. Naizabekov, and S. Lezhnev, METAL 2013: 376 (2013).
  17. A.A. Minaev, Sovmeshchennye Metallurgicheskie Processy [Combined Metallurgical Processes] (Technopark: 2008) (in Russian).
  18. Y. Mehdi, and M. Tisza, IOP Conf. Ser.: Mater. Sci. Eng., 448: 1 (2018); https://doi.org/10.1088/1757-899X/448/1/012022
  19. T. Siwecki and G. Engberg, Thermo-Mechanical Processing in Theory, Modelling & Practice: 121 (1996).
  20. F.J. Siciliano and J.J. Jonas, Metall. Mater. Trans. A, 31: 511 (2000); https://doi.org/10.1007/s11661-000-0287-8
  21. V.I. Pogorzhelsky, Kontroliruyemaya Prokatka Nepreryvnolitogo Metalla [Controlled Rolling of Continuously Cast Metal] (Metallurgy: 1986) (in Russian).
  22. I. Volokitina, A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, A. Volokitin, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Materials, 15: 2584 (2022); https://doi.org/10.3390/ma15072584
  23. O.P. Elesina, Sostoyanie i Perspektivy Razvitiya Uprochneniya Tolstolistovogo Prokata [State and Prospects for the Development of Hardening of Thick Plates. Rolled Products] (Chermetinformatsiya: 1986) (in Russian).
  24. J. Degenkolbe, and U. Schriever, Maschinenmark, 44: 66 (1988).
  25. V.I. Spivakov, E.A. Orlov, and I.V. Ganoshenko, Vybor Ratsional’noi Skhemy Kontroliruyemoi Prokatki Listov s Uskorennym Okhlazhdeniem na Reversivnom Stane [Selection of Rational Scheme of Controlled Rolling of Sheets with Accelerated Cooling on Reversing Mill] (Dnipropetrovsk: 2004) (in Russian).
  26. L.I. Efron, Vybor Ratsional’noi Skhemy Kontroliruemoi Prokatki Listov s Uskorennym Okhlazhdeniem na Reversivnom Stane [Formation of Structure and Mechanical Properties of Structural Steels during Thermomechanical Treatment in the Rolling Mill Flow] (Steel: 1995) (in Russian).
  27. S. Biswas, S.-J. Chen, and A. Satyanarayana, Dynamics and Control, 7: 327 (1997); https://doi.org/10.1023/A:1008268310234
  28. B. Lamberterie, Rev. Met. Paris, 103: 311 (2006); https://doi.org/10.1051/metal:2006131
  29. A. Ghosh, S. Das, S. Chatterjee, B. Mishra, and P. Ramachandra Rao, Mater. Sci. Eng. A, 348: 299 (2003). https://doi.org/10.1016/S0921-5093(02)00735-9
  30. S.Q. Yuan, G.L. Liang, and X.J. Zhang, J. Iron Steel Res. Int., 17: 60 (2010); https://doi.org/10.1016/S1006-706X(10)60143-4
  31. M.P. Phaniraj, B.B. Behera, and A.K. Lahir, J. Materials Processing Technology, 170: 323 (2005). https://doi.org/10.1016/j.jmatprotec.2005.05.009
  32. J. Adamczyk, J. Achievements in Materials and Manufacturing Engineering, 14: 9 (2006).
  33. S. Zajac, T. Siwecki, B. Hutchinson, and M. Attlegаrd, Metall. Mater. Trans. A, 22: 2681 (1991); https://doi.org/10.1007/BF02851362
  34. J.D. Baird and R.R. Preston, Metallurgical Society of AIME: 419 (1973).
  35. I. Volokitina, A. Volokitin, А. Naizabekov, and S. Lezhnev, Metallurgist, 63: 978 (2020); https://doi.org/10.1007/s11015-020-00915-y
  36. I. Satoshi and M. Masaru, JFE Technical Report, 26: 86 (2021).
  37. G. Sun, L. Du, J. Hu, B. Zhang, and R.D.K. Misra, Mater. Sci. Eng. A, 746: 341 (2019); https://doi.org/10.1016/j.msea.2019.01.020
  38. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier–Pergamon: 2004); https://doi.org/10.1016/b978-0-08-044164-1.x5000-2
  39. I.E. Volokitina, S.N. Lezhnev, E.P. Orlova, and G.G. Kurapov, Key Eng. Mater., 684: 346 (2016); https://doi.org/10.4028/www.scientific.net/KEM.684.346
  40. I.V. Gorynin, V.I. Gorynin, V.A. Malyshevsky, E.I. Khlusova, E.V. Nesterova, V.V. Orlov, and G.Yu. Kalinin, Ehkonomnolegirovannyye Stali s Nanomodifitsirovannoi Strukturoy dlya Ehkspluatatsii v Ehkstremal’nykh Usloviyakh [Economically Alloyed Steels with Nanomodified Structure for Operation in Extreme Conditions] (Problems of Materials Science: 2008) (in Russian).
  41. V.P. Gorbatenko and A.V. Lukin, Analiz Anizotropnosti Doehvtektoidnykh Stalei pri Deformatsionno-Termicheskoi Obrabotke [Analysis of Anisotropy of Pre-Eutectoid Steels during Deformation Heat Treatment] (Steel: 2010) (in Russian).
  42. See https://megapredmet.ru/1-78462.html
  43. O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi, and A.V. Ruban, Phys. Met. Metallogr., 117: 1293 (2016); https://doi.org/10.1134/S0031918X16130019
  44. I.K. Razumov, Yu.N. Gornostyrev, and M.I. Katsnelson, Phys. Metals Metallogr., 118: 362 (2017); https://doi.org/10.1134/S0031918X16130032
  45. W.C. Leslie and E. Hornbogen, Physical Metallurgy (Fourth Revised and Enhanced Edition) (Eds. R.W. Cahn and P. Haasen) (Elsevier Science BV: 1996), Vol. II, Ch. 17, p. 1555; https://doi.org/10.1016/B978-044489875-3/50022-3
  46. I.K. Razumov, D.V. Boukhvalov, M.V. Petrik, V.N. Urtsev, A.V. Shmakov, M.I. Katsnelson, and Yu.N. Gornostyrev, Phys. Rev. B, 90, No. 9: 094001 (2014); https://doi.org/10.1103/PhysRevB.90.094101
  47. I. Leonov, A.I. Poteryaev, Yu.N. Gornostyrev, A.I. Lichtenstein, M.I. Katsnelson, V.I. Anisimov, and D. Vollhardt, Sci. Rep., 4: 5585 (2014); https://doi.org/10.1038/srep05585
  48. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
  49. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  50. V.A. Tatarenko and T.M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  51. M. Shaban, S. Gozalzadeh, and B. Eghbali, Materials Transactions, 52, No. 1: 8 (2011); https://doi.org/10.2320/matertrans.M2010287
  52. J. Sas, T. Kvackaj, O. Milkovič, and M. Zemko, Materials, 9, No. 12: 971 (2016); https://doi.org/10.3390/ma9120971
  53. C. Hong, N. Tao, X. Huang, and K. Lu, Acta Mater., 58, No. 8: 3103 (2010); https://doi.org/10.1016/j.actamat.2010.01.049
  54. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  55. R.A. Grange, Metall. Mater. Trans. B, 4: 2231 (1973); https://doi.org/10.1007/BF02669363
  56. S. Khare, K. Lee, and H.K.D.H. Bhadeshia, Int. J. Mater. Res., 100: 1513 (2009); https://doi.org/10.3139/146.110222
  57. C. Capdevila, J. Ferrer, C. García-Mateo, F. Caballero, V. López, and C. Andrés, ISIJ International, 46, No. 7: 1093 (2006); https://doi.org/10.2355/isijinternational.46.1093
  58. G. Krauss, ISIJ International, 35, No. 4: 349 (1995); https://doi.org/10.2355/isijinternational.35.349