Structure and Properties of 3D Printed Zirconia Applied in Dentistry

M. O. Vasylyev$^1$ and P. O. Gurin$^2$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$P. L. Shupyk National Healthcare University of Ukraine, 9 Dorogozhytska Str., UA-04112 Kyiv, Ukraine

Received 28.01.2023; final version — 01.02.2023 Download PDF logo PDF

Abstract
During the last years, the interest in the application of the additive manufacturing (AM), also known as 3D printing, becomes extremely popular in the various fields of the medicine including the dentistry. Currently, metal and ceramic materials are most often used for dental prosthetics manufactured by 3D printing. The yttria-stabilized zirconia (YSZ) ceramics has become the best alternative for metal-based dental restorations. In this regard, the main goal of this review deals with studying the effect of the 3D printing parameters on the macro- and microstructure and, accordingly, on the mechanical properties of the sintered YSZ, and on this basis, to give the practical recommendations to clinical dentistry and further prospects. As most researched in recent years, the 3D printing methods of such ceramics are the Laser-Stereolithography (Laser-SL) and the Stereolithography-Digital Light Processing (SL-DLP) based on the vat-photopolymerization technology and are discussed here. The physical foundations and the technological parameters of these AM technologies are considered. The main attention focuses on the effects of the thermal conditions during the 3D printing on the solidification microstructure (density, grain size, and crystalline phase composition), which is controlled by the manufacturing technologies. In addition, the true hardness and the biaxial flexural strength of the 3D printed YSZ samples are discussed. At last, the advantages of 3D printing ceramics in dentistry are mentioned.

Keywords: dentistry, additive manufacturing, 3D printing, zirconia, microstructure, hardness, flexural strength.

DOI: https://doi.org/10.15407/ufm.24.01.106

Citation: M. O. Vasylyev and P. O. Gurin, Structure and Properties of 3D Printed Zirconia Applied in Dentistry, Progress in Physics of Metals, 24, No. 1: 106–131 (2023)


References  
  1. Y. Tang, Y. Zhang, Z. Meng, Q. Sun, L. Peng, L. Zhang, W. Lu, W. Liang, G. Chen, and Y. Wei, Front. Bioeng. Biotechnol., 10: 964651(2022); https://doi.org/10.3389/fbioe.2022.964651
  2. K. Torabi, E. Farjood, and S. Hamedani, J. Dent., 16: 1 (2015); https://doi.org/10.1016/0300-5712(88)90095-4)
  3. Abdullah Barazanchi, Kai Chun Li, Basil Al-Amleh, Karl Lyons, and J. Neil Waddell, J. Prosthodontics, 26: 156 (2017); https://doi.org/10.1111/jopr.12510
  4. Danial Khorsandi, Amir Fahimipour, Payam Abasiane, Sepehr Sadeghpour Saber, Mahla Seyedi, Sonya Ghanavati, Amir Ahmad, Andrea Amoretti De Stephanis, Fatemeh Taghavinezhaddilami, Anna Leonova, Reza Mohammadinejad, Majid Shabani, Barbara Mazzolai, Virgilio Mattoli, Franklin R. Tay, and Pooyan Makvandi, Acta Biomaterialia, 122: 26 (2021); https://doi.org/10.1016/j.actbio.2020.12.044
  5. A. Dawood, B. Marti Marti, V. Sauret-Jackson, and A. Darwood, Br. Dent. J., 219: 521 (2015); https://doi.org/10.1038/sj.bdj.2015.914
  6. T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M.A. Rifaiy, and Y.S. Al Jabbari, J. Prosthodont, 24: 303 (2015); https://doi.org/10.1111/jopr.12268
  7. K.P. Krug, A.W. Knauber, and F.P. Nothdurft, Clin. Oral Investig., 19: 401 (2015); https://doi.org/10.1007/s00784-014-1233-2
  8. M. Revilla-León and M. Özcan, Curr. Oral Health Rep., 4: 201 (2017); https://doi.org/10.1007/s00784-014-1233-2
  9. M.O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, and P.O. Gurin, Prog. Phys. Met., 23: 337 (2022); https://doi.org/10.15407/ufm.23.02.337
  10. E. Dianne Rekow, Dental Materials, 36: 9 (2020); https://doi.org/10.1016/j.dental.2019.08.103
  11. T. Chartier, C. Dupas, M. Lasgorceix, J. Brie , E. Champion, N. Delhote, and C. Chaput, J. Ceram. Sci. Technol., 6: 95 (2015); https://doi.org/10.4416/JCST2014-00040
  12. M. Dehurtevent, L. Robberecht, J. C. Hornez, A. Thuault, E. Deveaux, and P. Behin, Dental Materials, 33: 477 (2017).; https://doi.org/10.1016/j.dental.2017.01.018
  13. Xiuping Zhang, Xin Wu, and Jing Shi, Journal of Materials Research and Technology, 9: 9029 (2020); https://doi.org/10.1016/j.jmrt.2020.05.131
  14. J. Chevalier, Biomaterials, 27: 535 (2006); https://doi.org/10.1016/j.biomaterials.2005.07.034
  15. Y. Chen, J. Moussi, J.L. Drury, and J.C. Wataha, J. Expert. Rev. Med. Dev., 13: 945 (2016); https://doi.org/10.1080/17434440.2016.1230017
  16. W. Höland, V. Rheinberger, E. Apel, C. Ritzberger, F. Rothbrust, H. Kappert, F. Krumeich, and R. Nesper, J. Eur. Ceram. Soc., 29: 1291 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.08.023
  17. A. Dakskobler, P. Jevnikar, C. Oblak, and T. Kosmac, J. Eur. Ceram. Soc., 27: 1565 (2007); https://doi.org/10.1016/j.jeurceramsoc.2006.04.121
  18. A.R. Studart, F. Filser, P. Kocher, and L.J. Gauckler, Biomaterials, 28: 2695 (2007); https://doi.org/10.1016/j.biomaterials.2006.12.033
  19. A.J. Raigrodski, J. Prosthet. Den., 92: 557 (2004); https://doi.org/10.1016/j.prosdent.2004.09.015
  20. I. Denry, J.R. Kelly, Dent. Mater., 24: 299 (2008); https://doi.org/10.1016/j.dental.2007.05.007
  21. S. Saridag, O. Tak, and G. Alniacik, World J. Stomatology, 2: 40 (2013); https://doi.org/10.5321/wjs.v2.i3.40
  22. R.C. Garvie, R.H. J. Hannink, and R.T. Pascoe, Nature, 258: 703 (1975); https://doi.org/10.1038/258703a0
  23. Richard H.J. Hannink, Patrick M. Kelly, and Barry C. Muddle, J. Am. Ceram. Soc., 83: 461 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
  24. Vinciane Koenig, Claudine P. Wulfman, Mathieu A. Derbanne, Nathalie M. Dupont, Stephane O. Le Goff, Mie-Leng Tang, Laurence Seidel, Thibaut Y. Dewael, Alain J. Vanheusden, and Amelie K. Mainjot, Contemporary Clinical Trials Communications, 4: 25 (2016); https://doi.org/10.1016/j.conctc.2016.06.001
  25. Claudia Ângela Maziero Volpato, Luis Gustavo D’Altoe Garbelotto, Marcio Celso Fredel, and Federica Bondioli, Application of zirconia in dentistry: biological, mechanical and optical considerations, Advances in Ceramics: Electric and Magnetic Ceramics, Bioceramics, Ceramics (Croatia: InTech: 2011); https://doi.org/10.5772/21630
  26. R.C. Garvie and P.S. Nicholson., J. American Ceramic Society, 55: 152 (1972); https://doi.org/10.1111/j.1151-2916.1972.tb11290.x
  27. C. Piconi and G. Maccauro, Biomaterials, 20: 1 (1999); https://doi.org/10.1016/S0142-9612(98)00010-6
  28. A.H. Heuer, F.F. Lange, Swain M.V., and A.G. Evans, J. Am. Ceram. Soc., 69: 1 (1986); https://doi.org/10.1111/j.1151-2916.1986.tb07400.x
  29. N.R. Silva, L. Witek, P.G. Coelho, V.P. Thompson, E.D. Rekow, and J. Smay, J. Prosthodont., 20: 93 (2011); https://doi.org/10.1111/j.1532-849X.2010.00623.x
  30. J.R. Strub, E.D. Rekow, and S. Witkowski, J. Am. Dent. Assoc., 137: 1289 (2006); https://doi.org/10.14219/jada.archive.2006.0389
  31. V. Preis, M. Behr , S. Hahnel, G. Handel, and M. Rosentritt, J. Dent., 40: 921 (2012); https://doi.org/10.1016/j.jdent.2012.07.010
  32. A. Afzal, Materials Express, 4: 1 (2014); https://doi.org/10.1166/mex.2014.1148
  33. A. Azari, and S. Nikzad, Rapid Prototyping Journal, 15: 216 (2009); https://doi.org/10.1108/13552540910961946
  34. Z.C. Eckel, C. Zhou, J.H.Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler, Science, 351: 58 (2016); https://doi.org/10.1126/science.aad268
  35. M.L. Griffith and J.W. Halloran, J. Am. Ceram. Soc., 79: 2601 (1996); https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
  36. J.C. Wang, and H. Dommati, Int. J. Adv. Manu.f Technol., 98: 1537 (2018); https://doi.org/10.1007/s00170-018-2349-3
  37. S.H. Suleiman and Vult von Steyern P., Acta Odontol. Scand., 71:1280 (2013); https://doi.org/10.3109/00016357.2012.757650
  38. E.J. Bae, Jeong I.D., Kim W.C., Kim J.H., J. Prosthet. Dent., 118: 187 (2017); https://doi.org/10.1016/j.prosdent.2016.11.004
  39. M Ozcan, J. Oral Rehabilitation, 30: 265 (2003); https://doi.org/10.1046/j.1365-2842.2003.01038.x
  40. D.A. Oram and E.H. Cruickshank-Boyd, J. Prosthetic Dentistry, 52: 221 (1984); https://doi.org/10.1016/0022-3913(84)90100-8
  41. A. Eliasson, C.F. Arnelund, and A. Johansson, J. Prosthet. Dent., 98: 6 (2007); https://doi.org/10.1016/S0022-3913(07)60032-8
  42. T.B.W. Marchack, L.B. Chen, C.B. Marchack, and Y. Futatsuki, The J. Prosthetic Dentistry, 98: 478 (2007); https://doi.org/10.1016/s0022-3913(07)60148-6
  43. C. Gautam, J. Joyner, A. Gautam, J. Rao, and R. Vajtai, Dalton Transactions, 45:19194 (2016); https://doi.org/10.1039/C6DT03484E
  44. M. Guazzato, M.A lbakry, S.P. Ringer, and M.V. Swain, Dental Mater., 20: 449 (2004); https://doi.org/10.1016/j.dental.2003.05.002
  45. S.D. Heintze and V. Rousson, The Int. J. Prosthodontics, 2010; 23: 493 (2010); https://doi.org/10.1155/2015/392496
  46. Ginny Soon, Belinda Pingguan-Murphy, Khin WeeLai, and Sheikh Ali Akbar, Ceramics Int., 42: 12543 (2016); https://doi.org/10.1016/j.ceramint.2016.05.077
  47. Brian R. Stoner, Jason A. Griggs, John Neidigh, and Jeffrey R. Piascik, J. Biomedical Mater. Res., 102: 441 (2014); https://doi.org/10.1002/jbm.b.33021
  48. Shyh-Yuan Lee, and Cho-Pei Jiang, Mater. Manufacturing Proc., 30: 1498 (2015); https://doi.org/10.1080/10426914.2014.984208
  49. J. Chevalier, S. Deville, E. Munch, R. Jullian, and F. Lair, Biomaterials, 25: 5539 (2004); https://doi.org/10.1016/j.biomaterials.2004.01.002
  50. J.P. Goff, W. Hayes, S. Hull, M.T. Hutchings, and K.N. Clausen, Phys. Rev. B: Cond. Matter., 59, No. 22: 14202 (1999); https://doi.org/10.1103/PhysRevB.59.14202
  51. K. Kobayashi, H. Kuwajima, and T. Masaki, Solid State Ionics, 3–4: 489 (1981); https://doi.org/10.1016/0167-2738(81)90138-7
  52. A.E. Rodriguez, M. Monzavi, C.L. Yokoyama, and H. Nowzari, J. Esthet. Restor. Dent., 30: 538 (2018); https://doi.org/10.1111/jerd.12414
  53. R.B. Osman and M.V. Swain, Materials, 8: 932 (2015); https://doi.org/10.3390/ma8030932
  54. H. Nakai, M. Inokoshi, K. Nozaki, K. Komatsu, S. Kamijo, H. Liu, M. Shimizubata, S. Minakuchi B. Van Meerbeek, J. Vleugels, and F. Zhang, Materials, 14: 3694 (2021); https://doi.org/10.3390/ma14133694
  55. Khuram Shahzad, Jan Deckers, Zhongying Zhang, Jean-Pierre Kruth, and Jef Vleugels, J. Eur. Ceram. Soc., 34: 81 (2014); https://doi.org/10.1016/j.jeurceramsoc.2013.07.023
  56. A.C. Branco, R. Silva, T. Santos, H. Jorge, A.R. Rodrigues, R. Fernandes, S. Bandarra, I. Barahona, A.P.A. Matos, K. Lorenz, M. Polido, R. Colaço, A.P. Serro, and C.G. Figueiredo-Pina, Dent. Mater., 36: 442 (2020); https://doi.org/10.1016/j.dental.2020.01.006
  57. L.N. Khanlar, A. Salazar Rios, A. Tahmaseb, and A. Zandinejad, Dent. J., 9: 104 (2021); https://doi.org/10.3390/dj9090104
  58. C. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography (U.S. Patent No. 4575 330: 1986).
  59. Lian Qin, Wenquan Sui, Xiangquan Wu, Fei Yang, and Shaopeng Yang, Rapid Prototyping J., 24: 114 (2018); https://doi.org/10.1108/RPJ-09-2016-0144
  60. V. Tomeckova, J.W. Halloran, J. Eur. Ceram. Soc., 30: 3273 (2010); https://doi.org/10.1016/j.jeurceramsoc.2010.08.003
  61. W. Huang, X. Kang, C. Xu, J. Zhou, J. Deng, Y. Li, and S. Cheng, Adv. Mater., 30: 1706962 (2018); https://doi.org/10.1002/adma.201706962
  62. Y. Zeng, Y.Z. Yan, H.F. Yan, C.C. Liu, P.R. Li, P. Dong, Y. Zhao, and J.M. Chen, J. Mater. Sci., 53: 6291 (2018); https://doi.org/10.1007/s10853-018-1992-2
  63. J. Guo, Y. Zeng, P.R. Li, and J.M. Chen, Ceram. Int., 17: 23007 (2019); https://doi.org/10.1016/j.ceramint.2019.07.346
  64. X.A. Shuai, Y. Zeng, P.R. Li, and J.M. Chen, J. Mater. Sci., 55: 6771 (2020); https://doi.org/10.1007/s10853-020-04503-y
  65. Gerald Mitteramskogler, Robert Gmeiner, Ruth Felzmann, Simon Gruber, Christoph Hofstetter, Jurgen Stampfl, Jorg Ebert, Wolfgang Wachter, and Jorgen Laubersheimer, Additive Manufacturing, 1–4: 110 (2014); https://doi.org/10.1016/j.addma.2014.08.003
  66. Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, and Xiaoqun Zhu, Bioact. Mater., 5: 110 (2020); https://doi.org/10.1016/j.bioactmat.2019.12.003
  67. L.J. Hornbeck, Frame Addressed Spatial Light Modulator (U.S. Patent 4615595 (1986).
  68. Z. Zhao, X. Tian, and X. Song, J. Mater. Chem. C, 8: 11561 (2020); https://doi.org/10.1039/D0TC03548C
  69. Jiumeng Zhang, Qipeng Hu, Shuai Wang, Jie Tao, and Maling Go, Int. J. Bioprint., 6, No. 1: 242 (2020); https://doi.org/10.18063/ijb.v6i1.24270
  70. Emre Ozkol, Wen Zhang, Jorg Ebert, and Rainer Telle, Journal of the European Ceramic Society, 32: 2193 (2012); https://dx.doi.org/10.1016/j.jeurceramsoc.2012.03.006
  71. Bartolomeo Coppola, Nicola Cappetti, Luciano Di Maio, Paola Scarfatoand, and Loredana Incarnato, Materials, 11: 1947 (2018); https://doi.org/10.3390/ma11101947
  72. Qin Lian, Wenquan Sui, Xiangquan Wu, Fei Yang, and Shaopeng Yang, Rapid Prototyping J., 24: 114 (2018); https://doi.org/10.1108/RPJ-09-2016-0144
  73. Jussi M. Suominen, Erkka J. Frankberg, Pekka K. Vallittu, Erkki Levdnen, Jorma Vihinen, Teemu Vastamdki, Risto Kari and Lippo V.J. Lassila, Biomaterial Investigations in Dentistry, 6: 23 (2019); https://doi.org/10.1080/26415275.2019.1640608
  74. Hiroto Nakai, Masanao Inokoshi, Kosuke Nozaki, Keiji Komatsu, Shingo Kamijo, Hengyi Liu, Makoto Shimizubata, Shunsuke Minakuchi, Bart Van Meerbeek, Jef Vleugels, and Fei Zhang, Materials, 14: 3694 (2021); https://doi.org/10.3390/ma14133694
  75. Reham B. Osman, Albert J. van der Veen, Dennis Huiberts, Daniel Wismeijer, and Nawal Alhar, J. Mechanical Behavior of Biomedical Materials, 75: 521 (2017); https://doi.org/10.1016/j.jmbbm.2017.08.018
  76. Hezhen Li, Lu Song, Jialin Sun, Jing Ma, and Zhijian Shen, Adv. Appl. Ceram., 118: 30 (2019); https://dx.doi.org/10.1080/17436753.2018.1447834
  77. Kyoung-Jun Jang, Jin-Ho Kanga, John G. Fisher, and Sang-Won Park, Dental Mater., 35, No. 5: e97 (2019); https://doi.org/10.1016/j.dental.2019.02.001
  78. Ziyu Mei, Yuqing Lu, Yuxin Lou, Ping Yu, Manlin Sun, Xin Tan, Junjing Zhang, Li Yue, and Haiyang Yu, BioMed Res. Int., 2021: 6612840; https://doi.org/10.1155/2021/6612840
  79. Bartolomeo Coppola, Julien Schmitt, Tanguy Lacondemine, Caroline Tardivat, Laura Montanaro, and Paola Palmero, J. Eur. Ceram. Soc., 42: 2974 (2022); https://doi.org/10.1016/j.jeurceramsoc.2022.01.024
  80. Reem Abualsaud, Maissan Abussaud, Yara Assudmi, Ghadah Aljoaib, Abrar Khaled, Haidar Alalawi, Sultan Akhtar, Asif Matin, and Mohammed M. Gad, Materials, 15: 6988 (2022); https://doi.org/10.3390/ma15196988