Structure and Properties of 3D Printed Zirconia Applied in Dentistry

M. O. Vasylyev$^1$ and P. O. Gurin$^2$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$P. L. Shupyk National Healthcare University of Ukraine, 9 Dorogozhytska Str., UA-04112 Kyiv, Ukraine

Received 28.01.2023; final version — 01.02.2023 Download PDF logo PDF

During the last years, the interest in the application of the additive manufacturing (AM), also known as 3D printing, becomes extremely popular in the various fields of the medicine including the dentistry. Currently, metal and ceramic materials are most often used for dental prosthetics manufactured by 3D printing. The yttria-stabilized zirconia (YSZ) ceramics has become the best alternative for metal-based dental restorations. In this regard, the main goal of this review deals with studying the effect of the 3D printing parameters on the macro- and microstructure and, accordingly, on the mechanical properties of the sintered YSZ, and on this basis, to give the practical recommendations to clinical dentistry and further prospects. As most researched in recent years, the 3D printing methods of such ceramics are the Laser-Stereolithography (Laser-SL) and the Stereolithography-Digital Light Processing (SL-DLP) based on the vat-photopolymerization technology and are discussed here. The physical foundations and the technological parameters of these AM technologies are considered. The main attention focuses on the effects of the thermal conditions during the 3D printing on the solidification microstructure (density, grain size, and crystalline phase composition), which is controlled by the manufacturing technologies. In addition, the true hardness and the biaxial flexural strength of the 3D printed YSZ samples are discussed. At last, the advantages of 3D printing ceramics in dentistry are mentioned.

Keywords: dentistry, additive manufacturing, 3D printing, zirconia, microstructure, hardness, flexural strength.


Citation: M. O. Vasylyev and P. O. Gurin, Structure and Properties of 3D Printed Zirconia Applied in Dentistry, Progress in Physics of Metals, 24, No. 1: 106–131 (2023)

  1. Y. Tang, Y. Zhang, Z. Meng, Q. Sun, L. Peng, L. Zhang, W. Lu, W. Liang, G. Chen, and Y. Wei, Front. Bioeng. Biotechnol., 10: 964651(2022);
  2. K. Torabi, E. Farjood, and S. Hamedani, J. Dent., 16: 1 (2015);
  3. Abdullah Barazanchi, Kai Chun Li, Basil Al-Amleh, Karl Lyons, and J. Neil Waddell, J. Prosthodontics, 26: 156 (2017);
  4. Danial Khorsandi, Amir Fahimipour, Payam Abasiane, Sepehr Sadeghpour Saber, Mahla Seyedi, Sonya Ghanavati, Amir Ahmad, Andrea Amoretti De Stephanis, Fatemeh Taghavinezhaddilami, Anna Leonova, Reza Mohammadinejad, Majid Shabani, Barbara Mazzolai, Virgilio Mattoli, Franklin R. Tay, and Pooyan Makvandi, Acta Biomaterialia, 122: 26 (2021);
  5. A. Dawood, B. Marti Marti, V. Sauret-Jackson, and A. Darwood, Br. Dent. J., 219: 521 (2015);
  6. T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M.A. Rifaiy, and Y.S. Al Jabbari, J. Prosthodont, 24: 303 (2015);
  7. K.P. Krug, A.W. Knauber, and F.P. Nothdurft, Clin. Oral Investig., 19: 401 (2015);
  8. M. Revilla-León and M. Özcan, Curr. Oral Health Rep., 4: 201 (2017);
  9. M.O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, and P.O. Gurin, Prog. Phys. Met., 23: 337 (2022);
  10. E. Dianne Rekow, Dental Materials, 36: 9 (2020);
  11. T. Chartier, C. Dupas, M. Lasgorceix, J. Brie , E. Champion, N. Delhote, and C. Chaput, J. Ceram. Sci. Technol., 6: 95 (2015);
  12. M. Dehurtevent, L. Robberecht, J. C. Hornez, A. Thuault, E. Deveaux, and P. Behin, Dental Materials, 33: 477 (2017).;
  13. Xiuping Zhang, Xin Wu, and Jing Shi, Journal of Materials Research and Technology, 9: 9029 (2020);
  14. J. Chevalier, Biomaterials, 27: 535 (2006);
  15. Y. Chen, J. Moussi, J.L. Drury, and J.C. Wataha, J. Expert. Rev. Med. Dev., 13: 945 (2016);
  16. W. Höland, V. Rheinberger, E. Apel, C. Ritzberger, F. Rothbrust, H. Kappert, F. Krumeich, and R. Nesper, J. Eur. Ceram. Soc., 29: 1291 (2009);
  17. A. Dakskobler, P. Jevnikar, C. Oblak, and T. Kosmac, J. Eur. Ceram. Soc., 27: 1565 (2007);
  18. A.R. Studart, F. Filser, P. Kocher, and L.J. Gauckler, Biomaterials, 28: 2695 (2007);
  19. A.J. Raigrodski, J. Prosthet. Den., 92: 557 (2004);
  20. I. Denry, J.R. Kelly, Dent. Mater., 24: 299 (2008);
  21. S. Saridag, O. Tak, and G. Alniacik, World J. Stomatology, 2: 40 (2013);
  22. R.C. Garvie, R.H. J. Hannink, and R.T. Pascoe, Nature, 258: 703 (1975);
  23. Richard H.J. Hannink, Patrick M. Kelly, and Barry C. Muddle, J. Am. Ceram. Soc., 83: 461 (2000);
  24. Vinciane Koenig, Claudine P. Wulfman, Mathieu A. Derbanne, Nathalie M. Dupont, Stephane O. Le Goff, Mie-Leng Tang, Laurence Seidel, Thibaut Y. Dewael, Alain J. Vanheusden, and Amelie K. Mainjot, Contemporary Clinical Trials Communications, 4: 25 (2016);
  25. Claudia Ângela Maziero Volpato, Luis Gustavo D’Altoe Garbelotto, Marcio Celso Fredel, and Federica Bondioli, Application of zirconia in dentistry: biological, mechanical and optical considerations, Advances in Ceramics: Electric and Magnetic Ceramics, Bioceramics, Ceramics (Croatia: InTech: 2011);
  26. R.C. Garvie and P.S. Nicholson., J. American Ceramic Society, 55: 152 (1972);
  27. C. Piconi and G. Maccauro, Biomaterials, 20: 1 (1999);
  28. A.H. Heuer, F.F. Lange, Swain M.V., and A.G. Evans, J. Am. Ceram. Soc., 69: 1 (1986);
  29. N.R. Silva, L. Witek, P.G. Coelho, V.P. Thompson, E.D. Rekow, and J. Smay, J. Prosthodont., 20: 93 (2011);
  30. J.R. Strub, E.D. Rekow, and S. Witkowski, J. Am. Dent. Assoc., 137: 1289 (2006);
  31. V. Preis, M. Behr , S. Hahnel, G. Handel, and M. Rosentritt, J. Dent., 40: 921 (2012);
  32. A. Afzal, Materials Express, 4: 1 (2014);
  33. A. Azari, and S. Nikzad, Rapid Prototyping Journal, 15: 216 (2009);
  34. Z.C. Eckel, C. Zhou, J.H.Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler, Science, 351: 58 (2016);
  35. M.L. Griffith and J.W. Halloran, J. Am. Ceram. Soc., 79: 2601 (1996);
  36. J.C. Wang, and H. Dommati, Int. J. Adv. Manu.f Technol., 98: 1537 (2018);
  37. S.H. Suleiman and Vult von Steyern P., Acta Odontol. Scand., 71:1280 (2013);
  38. E.J. Bae, Jeong I.D., Kim W.C., Kim J.H., J. Prosthet. Dent., 118: 187 (2017);
  39. M Ozcan, J. Oral Rehabilitation, 30: 265 (2003);
  40. D.A. Oram and E.H. Cruickshank-Boyd, J. Prosthetic Dentistry, 52: 221 (1984);
  41. A. Eliasson, C.F. Arnelund, and A. Johansson, J. Prosthet. Dent., 98: 6 (2007);
  42. T.B.W. Marchack, L.B. Chen, C.B. Marchack, and Y. Futatsuki, The J. Prosthetic Dentistry, 98: 478 (2007);
  43. C. Gautam, J. Joyner, A. Gautam, J. Rao, and R. Vajtai, Dalton Transactions, 45:19194 (2016);
  44. M. Guazzato, M.A lbakry, S.P. Ringer, and M.V. Swain, Dental Mater., 20: 449 (2004);
  45. S.D. Heintze and V. Rousson, The Int. J. Prosthodontics, 2010; 23: 493 (2010);
  46. Ginny Soon, Belinda Pingguan-Murphy, Khin WeeLai, and Sheikh Ali Akbar, Ceramics Int., 42: 12543 (2016);
  47. Brian R. Stoner, Jason A. Griggs, John Neidigh, and Jeffrey R. Piascik, J. Biomedical Mater. Res., 102: 441 (2014);
  48. Shyh-Yuan Lee, and Cho-Pei Jiang, Mater. Manufacturing Proc., 30: 1498 (2015);
  49. J. Chevalier, S. Deville, E. Munch, R. Jullian, and F. Lair, Biomaterials, 25: 5539 (2004);
  50. J.P. Goff, W. Hayes, S. Hull, M.T. Hutchings, and K.N. Clausen, Phys. Rev. B: Cond. Matter., 59, No. 22: 14202 (1999);
  51. K. Kobayashi, H. Kuwajima, and T. Masaki, Solid State Ionics, 3–4: 489 (1981);
  52. A.E. Rodriguez, M. Monzavi, C.L. Yokoyama, and H. Nowzari, J. Esthet. Restor. Dent., 30: 538 (2018);
  53. R.B. Osman and M.V. Swain, Materials, 8: 932 (2015);
  54. H. Nakai, M. Inokoshi, K. Nozaki, K. Komatsu, S. Kamijo, H. Liu, M. Shimizubata, S. Minakuchi B. Van Meerbeek, J. Vleugels, and F. Zhang, Materials, 14: 3694 (2021);
  55. Khuram Shahzad, Jan Deckers, Zhongying Zhang, Jean-Pierre Kruth, and Jef Vleugels, J. Eur. Ceram. Soc., 34: 81 (2014);
  56. A.C. Branco, R. Silva, T. Santos, H. Jorge, A.R. Rodrigues, R. Fernandes, S. Bandarra, I. Barahona, A.P.A. Matos, K. Lorenz, M. Polido, R. Colaço, A.P. Serro, and C.G. Figueiredo-Pina, Dent. Mater., 36: 442 (2020);
  57. L.N. Khanlar, A. Salazar Rios, A. Tahmaseb, and A. Zandinejad, Dent. J., 9: 104 (2021);
  58. C. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography (U.S. Patent No. 4575 330: 1986).
  59. Lian Qin, Wenquan Sui, Xiangquan Wu, Fei Yang, and Shaopeng Yang, Rapid Prototyping J., 24: 114 (2018);
  60. V. Tomeckova, J.W. Halloran, J. Eur. Ceram. Soc., 30: 3273 (2010);
  61. W. Huang, X. Kang, C. Xu, J. Zhou, J. Deng, Y. Li, and S. Cheng, Adv. Mater., 30: 1706962 (2018);
  62. Y. Zeng, Y.Z. Yan, H.F. Yan, C.C. Liu, P.R. Li, P. Dong, Y. Zhao, and J.M. Chen, J. Mater. Sci., 53: 6291 (2018);
  63. J. Guo, Y. Zeng, P.R. Li, and J.M. Chen, Ceram. Int., 17: 23007 (2019);
  64. X.A. Shuai, Y. Zeng, P.R. Li, and J.M. Chen, J. Mater. Sci., 55: 6771 (2020);
  65. Gerald Mitteramskogler, Robert Gmeiner, Ruth Felzmann, Simon Gruber, Christoph Hofstetter, Jurgen Stampfl, Jorg Ebert, Wolfgang Wachter, and Jorgen Laubersheimer, Additive Manufacturing, 1–4: 110 (2014);
  66. Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, and Xiaoqun Zhu, Bioact. Mater., 5: 110 (2020);
  67. L.J. Hornbeck, Frame Addressed Spatial Light Modulator (U.S. Patent 4615595 (1986).
  68. Z. Zhao, X. Tian, and X. Song, J. Mater. Chem. C, 8: 11561 (2020);
  69. Jiumeng Zhang, Qipeng Hu, Shuai Wang, Jie Tao, and Maling Go, Int. J. Bioprint., 6, No. 1: 242 (2020);
  70. Emre Ozkol, Wen Zhang, Jorg Ebert, and Rainer Telle, Journal of the European Ceramic Society, 32: 2193 (2012);
  71. Bartolomeo Coppola, Nicola Cappetti, Luciano Di Maio, Paola Scarfatoand, and Loredana Incarnato, Materials, 11: 1947 (2018);
  72. Qin Lian, Wenquan Sui, Xiangquan Wu, Fei Yang, and Shaopeng Yang, Rapid Prototyping J., 24: 114 (2018);
  73. Jussi M. Suominen, Erkka J. Frankberg, Pekka K. Vallittu, Erkki Levdnen, Jorma Vihinen, Teemu Vastamdki, Risto Kari and Lippo V.J. Lassila, Biomaterial Investigations in Dentistry, 6: 23 (2019);
  74. Hiroto Nakai, Masanao Inokoshi, Kosuke Nozaki, Keiji Komatsu, Shingo Kamijo, Hengyi Liu, Makoto Shimizubata, Shunsuke Minakuchi, Bart Van Meerbeek, Jef Vleugels, and Fei Zhang, Materials, 14: 3694 (2021);
  75. Reham B. Osman, Albert J. van der Veen, Dennis Huiberts, Daniel Wismeijer, and Nawal Alhar, J. Mechanical Behavior of Biomedical Materials, 75: 521 (2017);
  76. Hezhen Li, Lu Song, Jialin Sun, Jing Ma, and Zhijian Shen, Adv. Appl. Ceram., 118: 30 (2019);
  77. Kyoung-Jun Jang, Jin-Ho Kanga, John G. Fisher, and Sang-Won Park, Dental Mater., 35, No. 5: e97 (2019);
  78. Ziyu Mei, Yuqing Lu, Yuxin Lou, Ping Yu, Manlin Sun, Xin Tan, Junjing Zhang, Li Yue, and Haiyang Yu, BioMed Res. Int., 2021: 6612840;
  79. Bartolomeo Coppola, Julien Schmitt, Tanguy Lacondemine, Caroline Tardivat, Laura Montanaro, and Paola Palmero, J. Eur. Ceram. Soc., 42: 2974 (2022);
  80. Reem Abualsaud, Maissan Abussaud, Yara Assudmi, Ghadah Aljoaib, Abrar Khaled, Haidar Alalawi, Sultan Akhtar, Asif Matin, and Mohammed M. Gad, Materials, 15: 6988 (2022);