Additive Manufacturing of Titanium-Based Materials Using Electron Beam Wire 3D Printing Approach: Peculiarities, Advantages, and Prospects

O. M. Ivasishin$^1$, D. V. Kovalchuk$^2$, P. E. Markovsky$^1$, D. G. Savvakin$^1$, O. O. Stasiuk$^1$, V. I. Bondarchuk$^1$, D. V. Oryshych$^1$, S. G. Sedov$^3$, and V. A. Golub$^3$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$JSC ‘NVO ‘Chervona Khvylya’, 28 Dubrovytska Str., UA-04114 Kyiv, Ukraine
$^3$National University of Defense of Ukraine named after Ivan Cherniakhovskyi, 28 Povitroflotsky Ave., UA-03049 Kyiv, Ukraine

Received 11.01.2023; final version — 23.01.2023 Download PDF logo PDF

Potential of additive manufacturing technologies, namely, xBeam 3D Metal Printing for the fabrication of uniform Ti–6Al–4V (Ti-6-4, mas.%) material as well as layered titanium-based structures, with mechanical properties sufficient for wide practical application is demonstrated. The key distinctive features of this process are titanium alloy wire as a feedstock material and hollow conical electron beam for heating and melting of the wire. 3D printed with special ‘shift strategy’ Ti-6-4 alloy meets requirements to mechanical characteristics of corresponding conventional cast and wrought products, if microstructure features, material anisotropy and crystallographic texture are controlled with proper selection of processing parameters. Production of multilayered materials consisting of combined layers of different titanium materials, viz. commercially pure titanium (CP-Ti), Ti-6-4 and high-strength T110 alloys, as well as metal matrix composites (MMC) based on Ti-6-4 matrix reinforced by fine TiC particles is considered. Microstructural features and mechanical properties of all 3D printed materials are investigated. Terminal ballistic tests are performed with different ammunition. Described results show the promising potential of 3D printing technologies, xBeam 3D Metal Printing as an example, for manufacturing of titanium-based multilayered armour materials with reduced thickness and weight, and at the same time, sufficient protection characteristics.

Keywords: titanium alloys, 3D printing, microstructure, multilayered material, mechanical properties, antiballistic protection.


Citation: O. M. Ivasishin, D. V. Kovalchuk, P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, V. I. Bondarchuk, D. V. Oryshych, S. G. Sedov, and V. A. Golub, Additive Manufacturing of Titanium-Based Materials Using Electron Beam Wire 3D Printing Approach: Peculiarities, Advantages, and Prospects, Progress in Physics of Metals, 24, No. 1: 75–105 (2023)

  1. G. Lutjering and J.C. Williams, Titanium, 2nd ed. (Berlin, Heidelberg: Springer: 2007];
  2. W.E. Frazier, J. Mater. Eng. Perform., 23, No. 6: 1917 (2014);
  3. T. Wohlers, I. Campbell, T. Caffrey, O. Diegel, and J. Kowen, Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry : Annual Worldwide Progress Report (Wohlers Associates: 2018).
  4. B. Gadagi and R. Lekurwale, Materials Today: Proceedings, 45: 277 (2021);
  5. S. Liu and Y. C. Shin, Materials & Design, 164: 107552 (2019);
  6. M. Saunders, Boosting AM adoption – the next phase of market growth (LinkedIn: May 29, 2018).
  7. C. Decaillet, Additive manufacturing — challenges to face, Int. Conf. Titanium 2017 (October 8–11, 2017, Florida, USA).
  8. F. Pixner, F, Warchomichka, P. Peter, A. Steuwer, M.H. Colliander, R. Pederson, and N.Enzinger, Materials, 13, No. 15: 3310 (2020);
  9. B. Wysocky, P. Maj, R. Sitek, J. Buhagiar, K.J. Kurzydłowski, and W. Święszkowski, Applied Sciences, 7: 657 (2017);
  10. A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, and C.E. Duty, International Journal of Fatigue, 199: 173 (2019);
  11. M. Peters, J. Kumpfert, C.H. Ward, and C. Leyens, Advanced Engineering Materials, 5, No. 6: 419 (2003);
  12. T.L. Jones, K. Kondoh, T. Mimoto, N. Nakanishi, and J. Umeda, Key Engineering Materials, 551: 118 (2013);
  13. J.S. Montgomery and M.G.H. Wells, JOM, 4 : 29-32 (2001);
  14. J.A. Zukas and D.R. Scheffler, International Journal of Solids and Structures, 38: 3321 (2001);
  15. N.K. Gupta and V. Madlu, International Journal of Impact Engineering, 19: 395 (1997);
  16. J.K. Lee, Analysis of Multi-Layered Materials under High Velocity Impact Using CTH (Thesis, Master of Science in Aeronautical Engineering: 2008);
  17. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, and S.V. Prikhodko, Journal of Materials Processing Technology, 269: 172 (2019);
  18. P.E. Markovsky, D.G. Savvakin, O.M. Ivasishin, V.I. Bondarchuk, and S.V. Prikhodko, Journal of Materials Engineering and Performance, 28: 5772 (2019);
  19. О.М. Іvasishin, P.E. Markovsky, D.G. Savvakin, O.О. Stasiuk, V.A. Golub, V.І. Mirnenko, S.H. Sedov, V.А. Kurban, and S.L. Antonyuk, Microstructure and properties of titanium-based materials promising for antiballistic protection, Progress in Physics of Metals, 20, No. 2: 285 (2019);
  20. D. Kovalchuk and O. Ivasishin, Profile electron beam 3D metal printing, Additive Manufacturing for the Aerospace Industry (Eds. F. Froes and R. Boyer) (Elsevier: 2019), p. 213;
  21. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugai, Journal of Elektrotechnica & Elektronica, Nos. 5–6: 36 (2016).
  22. D.V. Kovalchuk, V.I. Melnik, I.V. Melnik, and B.A. Tugai (Review, in Russian), Automatic Welding, No. 12: 26 (2017);
  23. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugai, Journal of Elektrotechnica & Elektronica, 53, Nos. 3–4: 60 (2018).
  24. O.V. Makhnenko, A.S. Milenin, E.A. Velikoivanenko, N.I. Pivtorak, and D.V. Kovalchuk, The Paton Welding Journal, 3: 7 (2017);
  25. D. Kovalchuk, G. Grygorenko, A. Tunik, L. Adeeva, S. Grygorenko, and S. Stepanyuk, Electrometallurgy Today, 133, No. 4: 62 (2018);
  26. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, Journal of Materials Engineering and Performance, 30, 7: 5307 (2022);
  27. D. Kovalchuk, O. Ivasishin, and D. Savvakin, MATEC Web of Conf., 321: 03014 (2020);
  28. P.E. Markovsky, D. Savvakin, O.O. Stasiuk, S.G. Siedov, V.A. Golub, D.V. Kovalchuk, and S.V. Prikhodko, Metallofizika i Noveishie Tekhnologii, 43, No. 12: 1573 (2021);
  29. P.E. Markovsky, O.M. Ivasishin, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, D.V. Kovalchuk, S.H. Sedov, V.A. Golub, and V.V. Buznytskyi, Metallofizika i Noveishie Tekhnologii, 44, No. 10: 1361 (2022);
  30. J. Fanning, J. Mater. Eng. Perform., 14: 686 (2005);
  31. J. Fanning, Proceedings of the 11th World Conference on Titanium (3–7 June 2007, Kyoto, Japan) (The Japan Institute of Metals Publish: 2007], Vol. 1, p. 487.
  32. J. Janiszewski, B. Fikus, and P.E. Markovsky (Military University of Technology, Warsaw, Poland: 2022) (unpublished work).
  33. P.E. Markovsky, J. Janiszewski, V.I. Bondarchuk, O.O. Stasyuk, K. Cieplak, and O.P. Karasevska, Metallography, Microstructure, and Analysis, 10: 839 (2021);
  34. D.D. Showalter, W.A. Gooch, M.S. Burkins, and R. Stockman Koch, Ballistic testing of SSAB ultra-high-hardness steel for armor applications (Army Research Laboratory, ARL-TR-4632: 2008];
  35. W.A. Gooch, M.S. Burkins, R. Squillacioti, R.-M. Stockman Koch, H. Oscarsson, and C. Nash, Ballistic testing of Swedish steel ARMOX ® plate for U.S. armor application (21st International Symposium on Ballistics, 19–23 April 2004, Adelaide, South Australia).
  36. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Progress in Physics of Metals, 24, No. 1: 5 (2023);
  37. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Progress in Physics of Metals, 24, No. 1: 38 (2023);