Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part II. Mechanical Properties

M. O. Vasylyev$^1$, B. M. Mordyuk$^{1,2}$, and S. M. Voloshko$^2$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received 13.10.2022; final version — 23.01.2023 Download PDF logo PDF

Abstract
Currently, the interest in the application of metal additive manufacturing (AM), also known as 3D printing, is grown massively in the various fields of the industry and surgery. AM has significant multiple advantages compared to traditional subtractive technologies for making highly customized parts with complex geometries without causing noteworthy extra costs. Now, several powder-based AM technologies for metals’ 3D printing are in progress, in particular, selective laser sintering (SLS), selective laser melting (SLM), and electron-beam melting (EBM). In the past few decades, increasing research and developments are devoted to the wire-feeding-based 3D printing production of parts made of the Ti–6Al–4V alloy, which is widely investigated in different fields such as aerospace, automotive, energy, and marine industries as well as the prosthetics and the production of orthopaedic implants. Due to the feasibility of economical producing large-scale metal components with relatively high deposition rate, low machinery cost, high material efficiency, and shortened lead-time compared to powder-based AM, wire-feeding-based AM (WFAM) is attracting significant attention in the industry and academia owing to its ability for the production of the large components of the medium geometric complexity. In recent years, three options of WFAM are intensively researched, which differ by the wire-melting heating sources: wire + arc additive manufacturing (WAAM); wire-laser AM (WLAM), and wire electron-beam additive manufacturing (WEBAM). The purpose of the present review is systematic analysis of the mechanical properties of the Ti–6Al–4V alloy samples 3D-printed by WFAM with various heating melting sources, namely, arc, laser, and electron beam. Particularly, considering the literature data for the period of 2013–2020, such important properties as yield strength, tensile strength, elongation, and hardness are analysed for the samples in the as-printed and post-processed conditions.

Keywords: additive manufacturing, 3D printing, Ti–6Al–4V alloy, yield strength, tensile strength, elongation, hardness.

DOI: https://doi.org/10.15407/ufm.24.01.038

Citation: M. O. Vasylyev, B. M. Mordyuk, and S. M. Voloshko, Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part II. Mechanical Properties, Progress in Physics of Metals, 24, No. 1: 38–74 (2023)


References  
  1. B. Berman, Business Horizons, 55: 155 (2012); https://doi.org/10.1016/j.bushor.2011.11.003
  2. D.L. Rakov and R.Y. Sukhorukov, J. Mach. Manuf. Reliab., 50: 616 (2021); https://doi.org/10.3103/S1052618821070116
  3. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Composites Part B: Eng., 143: 172 (2018); https://doi.org/10.1016/j.compositesb.2018.02.012
  4. C.W. Hull, Method and Apparatus for Production of Three-Dimensional Objects by Stereolithography, Patent US4575330A, Publ. Mar 11, 1986.
  5. J.W. Stansbury and M.J. Idacavage, Dent. Mater., 32: 54 (2016); https://doi.org/10.1016/j.dental.2015.09.018
  6. P. Wu, J. Wang, and X. Wang, Automation in Construction, 68: 21 (2016); https://doi.org/10.1016/j.autcon.2016.04.005
  7. O. Ivanova, C. Williams, and T. Campbell, Rapid. Prototyp. J., 19: 353 (2013); https://doi.org/10.1108/RPJ-12-2011-0127
  8. M. Vaezi, H. Seitz, and S. Yang, Int. J. Adv. Manuf. Technol., 67: 1721 (2013); https://doi.org/10.1007/s00170-012-4605-2
  9. B. Bhushan, and M. Caspers, Microsyst. Technol., 23: 1117 (2017); https://doi.org/10.1007/s00542-017-3342-8
  10. D.A. Lesyk, S. Martinez, B.N. Mordyuk, O.O. Pedash, V.V. Dzhemelinskyi, and А. Lamikiz, Additive Manuf. Let., 3: 100063 (2022); https://doi.org/10.1016/j.addlet.2022.100063
  11. E. Atzeni, S. Genna, E. Menna, G. Rubino, A. Salmi, and F. Trovalusci, Mater., 14: 5366 (2021); https://doi.org/10.3390/ma14185366
  12. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, А. Lamikiz, and G.I. Prokopenko, Surf. Coat. Technol., 381: 125136 (2020); https://doi.org/10.1016/j.surfcoat.2019.125136
  13. H.D. Nguyen, A. Pramanik, A.K. Basak, Y. Dong, C. Prakash, S. Debnath, S. Shankar, I.S. Jawahir, S. Dixit, D. Buddhi, J. Mater. Res. Technol., 18: 4641 (2022); https://doi.org/10.1016/10.1016/j.jmrt.2022.04.055
  14. Y.W.D. Tay, B. Panda, S.C. Paul, N.A. Noor Mohamed, M.J. Tan, and K.F. Leong, Virtual Phys. Prototyping, 12: 261 (2017); https://doi.org/10.1080/17452759.2017.1326724
  15. L. Mashigo, H. Möller, and C. Gassmann, J. Southern African Inst. Mining and Metallurgy, 121: 325 (2021); https://doi.org/10.17159/24119717/1498/2021
  16. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Mater. Sci. Technol., 32: 641 (2016); https://doi.org/10.1179/1743284715Y.0000000073
  17. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Robotics and Computer Integrated Manuf., 34: 8 (2015); https://doi.org/10.1016/j.rcim.2015.01.003
  18. B. Baufeld, O. van der Biest, and R. Gault, Int. J. Mat. Res., 100: 11 (2009); https://doi.org/10.3139/146.110217
  19. B. Baufeld and O. van der Biest, Adv. Mater., 10: 015008 (2009); https://doi.org/10.1088/1468-6996/10/1/015008
  20. B. Baufeld, O. van der Biest, and R. Gault, Mater. Des., 31: S106 (2010); https://doi.org/10.1016/j.matdes.2009.11.032
  21. B. Baufeld, O. van der Biest, R. Gault, and K. Ridgway, IOP Conf. Ser.: Mater. Sci. Eng., 26: 012001 (2011); https://doi.org/10.1088/1757-899X/26/1/012001
  22. F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, J. Mater. Process. Technol., 212: 137 (2012); https://doi.org/10.1016/j.jmatprotec.2012.02.002
  23. F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy, Metall. Mater. Trans. A, 44: 968 (2013); https://doi.org/10.1007/s11661-012-1444-6
  24. M.J. Bermingham, L. Nicastro, D. Kent, Y. Chen, and M.S. Dargusch, J. Alloys Compounds, 753: 247 (2018); https://doi.org/10.1016/j.jallcom.2018.04.158
  25. Y. Xie, M. Gao, F. Wang, Q. Li, and X.Y. Zeng, Mater. Sci. Eng. A, 737: 310 (2018); https://doi.org/10.1016/j.msea.2018.09.076
  26. B.E. Carroll, T.A. Palmer, A.M. Beese., Acta Mater., 87: 309 (2015); https://doi.org/10.1016/j.actamat.2014.12.054
  27. B.N. Mordyuk, G.I. Prokopenko, Y.V. Milman, M.O. Iefimov, and A.V. Sameljuk, Mater. Sci. Eng. A, 563: 138 (2013); https://doi.org/10.1016/j.msea.2012.11.061
  28. Y. Kudryavtsev and J. Kleiman, Weld. Technol., 58: 47 (2014); https://doi.org/10.1115/PVP2013-97185
  29. B.N. Mordyuk and G.I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006); https://doi.org/10.1016/j.msea.2006.07.119
  30. B.N. Mordyuk and G.I. Prokopenko, J. Sound Vib., 308: 855 (2007); https://doi.org/10.1016/j.jsv.2007.03.054
  31. Y.H. Yang, X. Jin, C.M. Liu, M.Z. Xiao, J.P. Lu, H.L. Fan, and S.Y. Ma, Metals, 8: 934 (2018); https://doi.org/10.3390/met811093
  32. J. Wang, X. Lin, M. Wang, J.Q. Li, C. Wang, and W.D. Huang, Mater. Sci. Eng. A, 776: 139020 (2020); https://doi.org/10.1016/j.msea.2020.139020
  33. S. Springer, M. Leitner, T. Gruber, B. Oberwinkler, M. Lasnik, and F. Grün, Metals, 12: 795 (2022); https://doi.org/10.3390/met12050795
  34. Z. Zhao, J. Chen, X.F. Lu, H. Tan, X. Lin, and W.D. Huang, Mater. Sci. Eng. A, 691: 16 (2017); https://doi.org/10.1016/j.msea.2017.03.035
  35. M. Thoms, G.J. Baxter, and I. Todd. Acta Mater., 108: 26 (2016); https://doi.org/10.1016/j.actamat.2016.02.025
  36. T. Wang, Y.Y. Zhu, and S.Q. Zhang, J. Alloys Compounds, 632: 513 (2015); https://doi.org/10.1016/j.jallcom.2015.01.256
  37. A. Kratky, Production of Hard Metal Alloys, Patent US2076952, Publ. Apr. 13, 1937.
  38. I. Harter, Method of Forming Structures Wholly of Fusion Deposited Weld Metal, Patent US2299747A, Publ. Oct. 27, 1942.
  39. C.O. Brown, E.M. Breinan, and B.H. Kear, Method for Fabricating Articles by Sequential Layer Deposition, Patent US4323756A, Publ. Apr. 06, 1982.
  40. A. Heralić, A.-K. Christiansson, M. Ottosson, and B. Lennartson, Opt. Laser. Eng., 48: 478 (2010); https://doi.org/10.1016/j.optlaseng.2009.08.012
  41. E. Brandl, F. Palm, V. Michailov, B. Viehweger, and C. Leyens, Mater. Des., 32: 4665 (2011); https://doi.org/10.1016/j.phpro.2010.08.087
  42. S.H. Mok, G.J. Bi, J. Folkes, I. Pashby, and J. Segal, Surf. Coat. Technol., 202: 4613 (2008); https://doi.org/10.1016/j.surfcoat.2008.03.028
  43. E. Brandl, C. Leyens, and F. Palm, IOP Conf. Ser.: Mater. Sci. Eng., 26: 012004 (2011); https://doi.org/10.1088/1757-899X/26/1/012004
  44. B. Baufeld, E. Brandl, and O. van der Biest, J. Mater. Proc. Technol., 211: 1146 (2011); https://doi.org/10.1016/j.jmatprotec.2011.01.018
  45. J. Fu, L. Gong, Y. Zhang, Q. Wu, X.Z. Shi, J.C. Chang, and J.P. Lu, Appl. Sci., 7: 227 (2017); https://doi.org/10.3390/app7030227
  46. D.S. Henn, Solid Freeform Fabrication System and Method, US Patent 7073561, Publ. Jul. 11, 2006.
  47. K.M. Taminger, J.K. Watson, R.A. Hafley, and D.D. Petersen, Solid Freeform Fabrication Apparatus and Methods, Patent US7168935 B1, Publ. Jan 30, 2007.
  48. P. Wanjara, J. Gholipour, E. Watanabe, K. Watanabe, T. Sugino, P. Patnaik, F. Sikan, and M. Brochu, Adv. Mater. Sci. Eng., 2020: 1902567 (2020); https://doi.org/10.1155/2020/1902567
  49. D. Kovalchuk, O. Ivasishin, and D. Savvakin, MATEC Web of Conferences, 321: 03014 (2020); https://doi.org/10.1051/matecconf/202032103014
  50. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30: 5307 (2021); https://doi.org/10.1007/s11665-021-05770-9
  51. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugaj, J. Elektrotechnica & Elektronica, 51: 37 (2016); https://epluse.ceec.bg/wp-content/uploads/2018/08/20160506-full.pdf
  52. O.M. Ivasishin D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75 (2023); https://doi.org/10.15407/ufm.24.01.075
  53. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 5 (2023); https://doi.org/10.15407/ufm.24.01.005