Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part II. Mechanical Properties
M. O. Vasylyev$^1$, B. M. Mordyuk$^{1,2}$, and S. M. Voloshko$^2$
$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
Received 13.10.2022; final version — 23.01.2023 Download PDF
Abstract
Currently, the interest in the application of metal additive manufacturing (AM), also known as 3D printing, is grown massively in the various fields of the industry and surgery. AM has significant multiple advantages compared to traditional subtractive technologies for making highly customized parts with complex geometries without causing noteworthy extra costs. Now, several powder-based AM technologies for metals’ 3D printing are in progress, in particular, selective laser sintering (SLS), selective laser melting (SLM), and electron-beam melting (EBM). In the past few decades, increasing research and developments are devoted to the wire-feeding-based 3D printing production of parts made of the Ti–6Al–4V alloy, which is widely investigated in different fields such as aerospace, automotive, energy, and marine industries as well as the prosthetics and the production of orthopaedic implants. Due to the feasibility of economical producing large-scale metal components with relatively high deposition rate, low machinery cost, high material efficiency, and shortened lead-time compared to powder-based AM, wire-feeding-based AM (WFAM) is attracting significant attention in the industry and academia owing to its ability for the production of the large components of the medium geometric complexity. In recent years, three options of WFAM are intensively researched, which differ by the wire-melting heating sources: wire + arc additive manufacturing (WAAM); wire-laser AM (WLAM), and wire electron-beam additive manufacturing (WEBAM). The purpose of the present review is systematic analysis of the mechanical properties of the Ti–6Al–4V alloy samples 3D-printed by WFAM with various heating melting sources, namely, arc, laser, and electron beam. Particularly, considering the literature data for the period of 2013–2020, such important properties as yield strength, tensile strength, elongation, and hardness are analysed for the samples in the as-printed and post-processed conditions.
Keywords: additive manufacturing, 3D printing, Ti–6Al–4V alloy, yield strength, tensile strength, elongation, hardness.
DOI: https://doi.org/10.15407/ufm.24.01.038
Citation: M. O. Vasylyev, B. M. Mordyuk, and S. M. Voloshko, Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part II. Mechanical Properties, Progress in Physics of Metals, 24, No. 1: 38–74 (2023)