Nature of the Brittleness of Metals

Yu. Ya. Meshkov, G. P. Zimina, and N. M. Stetsenko

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 18.08.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
The brittleness of material is considered as a specific manifestation of mechanical behaviour under load, which appears in the instability of the strength characteristic value under conditions of non-uniformity of the stress–strain state (SSS). For the naturally ductile metals, such a mechanical behaviour is possible under conditions of non-uniform SSS under the action of stress raisers (SR), cracks, etc. The existent ductility of material counteracts the strength instability (σ0.2 is yield strength), but as a specific indicator, namely, the deformation resistance (break resistance) Br, which comprehensively reflects the degree of ductility and strain hardening of the metal within the SR zone. The critical value B corresponds to the strength σ0.2C, at which the strength stability switches over a state of instability at temperature TC, where the fracture of specimen with SR occurs at a nominal stress σNF, is less than σ0.2C: σNF ≤ σ0.2C. We analyse the experimental findings of different authors for samples with SR (cracks), which enable to estimate the critical values of σ0.2C and B depending on the existent level of Br in steels. A regular permanent dependence of B on Br for different types of SR is revealed, that allows predetermining the predisposition of the investigated steel to the strength instability under the action of SR according to the known values of standard mechanical characteristics of stretched samples σ0.2 and SK (true failure stress in the specimen neck). The concept of the metals’ brittleness, as a manifestation of the strength instability under the conditions of SR, may become a foundation for the development of innovative methodology for engineering calculation of force reliability of products containing SR or known cracks. This is possible through determining the maximum allowable critical characteristic of the strength in alloy, σ0.2C, that guarantees a non-occurrence of brittle fracture for a product with this type of SR, if σNF ≤ σ0.2.

Keywords: strength, strength instability, brittleness, embrittlement of steel, stress raiser, break resistance, ductility.

DOI: https://doi.org/10.15407/ufm.23.04.744

Citation: Yu. Ya. Meshkov, G. P. Zimina, and N. M. Stetsenko, Nature of the Brittleness of Metals, Progress in Physics of Metals, 23, No. 4: 744–755 (2022)


References  
  1. А.А. Shmykov, Spravochnik Termista (Moscow: Mashgiz: 1961) (in Russian).
  2. P.F. Koshelev and S.E. Belyaev, Prochnost’ i Plastichnost’ Konstruktsionnykh Materialov pri Nizkikh Temperaturakh [Strength and Plasticity of Structural Materials at Low Temperatures] (Moscow: Mashinostroenie: 1967) (in Russian).
  3. G.S. Pisarenko and А.А. Lebedev, Deformirovanie i Prochnost’ Materialov pri Slozhnom Napryazhyonnom Sostoyanii (Kiev: Naukova Dumka: 1976) (in Russian).
  4. Mekhanika Razrusheniya i Prochnost’ Materialov (Ed. V.V. Panasyuk) (Kiev: Naukova Dumka: 1988), vol. 3 (in Russian).
  5. Ya.B. Fridman, Mekhanicheskie Svoistva Metallov (Moscow: Mashinostroenie: 1972) (in Russian).
  6. Metally. Metody Ispytaniya na Udarnyy Izgib pri Ponizhennykh, Komnatnoy i Povyshennykh Temperatyrakh [Metals. Impact Test Methods at Low, Room, and High Temperatures], GOST 9454-78 (Moscow: Izdatel’stvo Standartov: 1978) (in Russian).
  7. Raschety Ispytaniy na Prochnost’. Metody Mekhanicheskikh Ispytaniy Metallov. Opredelenie Kharakteristic Treshchinostoykosti (Viazkosti Razrusheniya) pri Staticheskom Nagruzhenii], GOST 25.506-85 (Moscow: Izdatel’stvo Standartov: 1985) (in Russian).
  8. V.M. Gryshchenko, Yu.Ya. Meshkov, Yu.O. Polushkin, and A.V. Shiyan, Metallofiz. Noveishie Tekhnol., 37, No. 7: 961 (2015) (in Russian); https://doi.org/10.15407/mfint.37.07.0961
  9. Yu.Ya. Meshkov and A.V. Shiyan, Steel in Translation, 49, No. 12: 888 (2019); https://doi.org/10.3103/S0967091219120088
  10. Yu.Ya. Meshkov and A.V. Shiyan, Steel in Translation, 48, No. 4: 256 (2018); https://doi.org/10.3103/S0967091218040083
  11. Yu.Ya. Meshkov and A.V. Shiyan, Stal’, No. 1: 45 (2018) (in Russian).
  12. Yu.Ya. Meshkov and K.F. Soroka, Metallofiz. Noveishie Tekhnol., 43, No. 6: 781 (2021) (in Ukranian); https://doi.org/10.15407/mfint.43.06.0781
  13. G.G. Kurdyumova, Yu.V. Mil’man, and V.I. Trefilov, Metallofizika, 1, No. 2: 55 (1979) (in Russian).
  14. A.V. Shiyan and Yu.Ya. Meshkov, Metallofiz. Noveishie Tekhnol., 41, No. 6: 755 (2019) (in Russian); https://doi.org/10.15407/mfint.41.06.0775
  15. A.V. Shiyan, Fizicheskaya Priroda Lokal’nogo Napryazheniya Khrupkogo Razrusheniya Staley i Svarnykh Shvov [Physical Nature of Local Stress of Brittle Fracture of Steels and Welds] (Thesis of Disser. for Cand. Phys.-Math. Sci.) (Kyiv: 1990) (in Russian).
  16. A.N. Stroh, Pros. Roy. Soc. London A, 223, No. 1154: 404 (1954); https://doi.org/10.1098/rspa.1954.0124
  17. Yu.Ya. Meshkov, Fizicheskaya Priroda Razrusheniya Stalnykh Konstruktsiy (Kiev: Naukova Dumka: 1981).
  18. A.V. Shiyan, Yu.Ya. Meshkov, and Yu. A. Polushkin, Steel in Translation, 49, No. 6: 414 (2019); https://doi.org/10.3103/S096709121906010X
  19. J.H. Hollomon, Amer. Inst. Min. Metallurg. Eng.: Iron Steel Div., 162: 268 (1945).
  20. Yu.Ya. Meshkov and G.P. Zimina, Metallofiz. Noveishie Tekhnol., 44, No. 6: 807 (2022); https://doi.org/10.15407/mfint.44.06.0807