Martensitic Transformations in Stainless Steels

I. E. Volokitina, A. V. Volokitin, and E. A. Panin

$^1$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38; 111500 Rudny, Kazakhstan
$^2$Karaganda Industrial University, Republic Ave., 30; 101400 Temirtau, Kazakhstan

Received 12.08.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
Currently, the direction of materials’ research, in which the martensitic transformations are observed, is intensively developed. This is due to the fact that, in the martensitic-transformation process, various defects of crystal structure (twins, dislocations, packaging defects, etc.) are formed in many materials, which together with grain fragmentation lead to a significant increase in the strength properties. The widespread occurrence of martensitic transformations has led to the study of the defective microstructure features and changes in the mechanical properties in the martensitic transformation process. This allowed the theory of martensitic transformations to occupy a key place in the science of the structure and properties of crystalline bodies. The operating temperature range of steels of this class is limited from below by their tendency to low-temperature embrittlement (cold breaking) under radiation effects, and from above, by the level of long-term strength (heat resistance). In this regard, today, the increased attention of specialists in the field of condensed matter physics to ferritic–martensitic steels is caused by the need to identify the mechanisms for the formation of microstructures and functional properties of steels stable at operating temperatures, as well as to search for reserves to increase their heat resistance, while maintaining a sufficient plasticity level.

Keywords: stainless steel, martensite, martensitic transformation, microstructure, annealing, heat resistance.

DOI: https://doi.org/10.15407/ufm.23.04.684

Citation: I. E. Volokitina, A. V. Volokitin, and E. A. Panin, Martensitic Transformations in Stainless Steels, Progress in Physics of Metals, 23, No. 4: 684–728 (2022)


References  
  1. V.A. Lobodyuk and E.I. Estrin, Martensitic Transformations (Cambridge International Science Publishing: 2014).
  2. N.A. Tereshchenko, I.L. Yakovleva, T.A. Zubkova, M.V. Chukin, and N.V. Koptseva, Structure levels of pearlite deformation in carbon steel of eutectoid composition, Phys. Metals Metallogr., 114: 430 (2013); https://doi.org/10.1134/s0031918x13050116
  3. I.E. Volokitina, J. Chem. Technol. Metall., 55, No. 2: 479 (2020).
  4. A. Belyakov, T. Sakai, H. Miura, and R. Kaibyshev, Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel, Scr. Mater., 42: 319 (1980); https://doi.org/10.1016/S1359-6462(99)00353-x
  5. M.O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, and D.A. Lesyk, Microstructure evolution of the carbon steels during surface severe plastic deformation, Prog. Phys. Met., 22, No. 4: 562 (2021); https://doi.org/10.15407/ufm.22.04.562
  6. S. Lezhnev, E. Panin, and I. Volokitina, Research of combined process ‘rolling–pressing’ influence on the microstructure and mechanical properties of aluminium, Adv. Mater. Res., 814: 68 (2013); https://doi.org/10.4028/www.scientific.net/amr.814.68
  7. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater., 59: 658 (2011); http://doi.org/10.1016/j.actamat.2010.10.002
  8. A. Naizabekov and I. Volokitina, Influence of equal-channel angular pressing on changes in the microstructure of steel grade 1055, Metallurgist, 64: 1029 (2021); https://doi.org/10.1007/s11015-021-01083-3
  9. R. Song, D. Ponge, D. Raabe, J. Speer, and D. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Mater. Sci. Eng. A, 441: 1 (2006); https://doi.org/10.1016/j.msea.2006.08.095
  10. R. Song, D. Ponge, and D. Raabe, Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing, Acta Mater., 53: 4881 (2005); https://doi.org/10.1016/j.actamat.2005.07.009
  11. R. Song, D. Ponge, D. Raabe, and D. Kaspar, Acta Mater., 53: 845 (2005); https://doi.org/10.1016/j.actamat.2004.10.051
  12. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Prog. Phys. Met., 23, No. 3: 411 (2022); https://doi.org/10.15407/ufm.23.03.411
  13. I.A. Ditenberg, A.N. Tyumentsev, K.V. Grinyaev, V.M. Chernov, M.M. Potapenko, and A.V. Korznikov, Features of the formation of the submicrocrystalline structural state upon plastic deformation of a V–4Ti–4Cr alloy in Bridgman anvils, Technical Phys., 56: 815 (2011); https://doi.org/10.1134/s0031918x12020020
  14. G. Krauss, Metallurgical and Materials Transactions B, 32: 205 (2001); https://doi.org/10.1007/s11663-001-0044-4
  15. V.A. Lobodyuk, and E.I. Estrin, Martensitnyye Prevrashcheniya [Martensitic Transformations] (Moscow: FIZMATLIT: 2009) (in Russian).
  16. A. Volokitin A. Naizabekov, I. Volokitina, S. Lezhnev, and E. Panin, Mater. Lett., 304: 130598 (2021); https://doi.org/10.1016/j.matlet.2021.130598
  17. Т.М. Radchenko, V.А. Tatarenko, Fe–Ni alloys at high pressures and temperatures: statistical thermodynamics and kinetics of the L12 or D019 atomic order, Uspehi Fiziki Metallov, 9, No. 1: 1 (2008); https://doi.org/10.15407/ufm.09.01.001
  18. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Diffusivities and kinetics of short-range and long-range orderings in Ni–Fe permalloys, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  19. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-empirical parameterization of interatomic interactions and kinetics of the atomic ordering in Ni–Fe–C permalloys and elinvars, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/ddf.280-281.29
  20. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Semi-empirical parameterization of interatomic interactions, which is based on statistical-thermodynamic analysis of data on phase equilibriums in b.c.c.-Fe–Co alloy. I. Primary ordering, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
  21. V.A. Tatarenko and T.M. Radchenko, The application of radiation diffuse scattering to the calculation of phase diagrams of f.c.c. substitutional alloys, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/s0966-9795(03)00174-2
  22. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  23. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Statistical thermodynamics and ordering kinetics of D019-type phase: application of the models for h.c.p.-Ti–Al alloy, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/ssp.138.283
  24. V.A. Tatarenko and T.M. Radchenko, Direct and indirect methods of the analysis of interatomic interaction and kinetics of a relaxation of the short-range order in close-packed substitutional (interstitial) solid solutions, Usp. Fiz. Met., 3, No. 2: 111 (2002); https://doi.org/10.15407/ufm.03.02.111
  25. T.M. Radchenko and V.A. Tatarenko, Atomic-ordering kinetics and diffusivities in Ni–Fe permalloy, Defect Diffus. Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/ddf.273-276.525
  26. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Kinetics of short-range ordering of substitutional solid solutions (according to data on a scattering of various kinds of waves). I. Microscopic parameters of migration of atoms within f.c.c.-Ni–Mo in Fourier-representation, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387–406 (2004).
  27. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Kinetics of short-range ordering of substitutional solid solutions (according to data on a scattering of various kinds of waves). II. Parameters of atomic microdiffusion within f.c.c.-Ni–Mo, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541–558 (2004).
  28. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Kinetics parameters of atomic migration and diffuse scattering of radiations within the f.c.c.-Ni–Al alloys, Defect Diffus. Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/ddf.273-276.520
  29. M.A. Smirnov, V.M. Schastlivtsev, and L.G. Zhuravlev, Osnovy Termicheskoy Obrabotki Staley [Fundamentals of Heat Treatment of Steels] (Science and Technology: 2002) (in Russian).
  30. Y.G. Andreev, B.G. Belyakov, and A.P. Gruzdov, Opredelenie Prostranstvennoy Formy i Razmerov Kristallov Martensita [Determination of Spatial Shape and Size of Martensite Crystals], Fiz. Metal. Metalloved. (1973) (in Russian).
  31. V.I. Izotov, Morfologiya i Kristallogeometriya Reechnogo (Massivnogo) Martensita [Morphology and Crystallogeometry of Lath (Massive) Martensite], Phys. Met. Metallurgy (1972) (in Russian).
  32. V.M. Schastlivtsev, Strukturnyye Osobennosti Martensita v Konstruktsionnykh Stalyakh [Structural Peculiarities of Martensite in Structural Steels], Phys. Met. Metallurgy (1972) (in Russian).
  33. C.A. Apple, R.Y. Karon, and G. Kraus, Packet microstructure in Fe-0.2 pct C martensite, Metallurgical Transactions, 5: 593 (2010); https://doi.org/10.1007/bf02644654
  34. Yu.G. Andreev, E.I. Zarkova, and M.A. Shtremel, Granitsy i Subgranitsy v Paketnom Martensite. I. Granitsy mezhdu Kristallami v Pakete [Boundaries and Subboundaries in Batch Martensite. I. Boundaries between Crystals in a Package], Phys. Met. Metallurgy (1990) (in Russian).
  35. V.M. Schastivtsev, D.A. Mirzaev, and I.L. Yakovleva, Strukturnye Osobennosti Martensita v Konstruktsionnykh Staliakh [Structure of Heat-Treated Steel] (Metallurgy: 1994) (in Russian).
  36. K. Maruyama, K. Sawada, and J. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ Int., 6: 641 (2001); https://doi.org/10.2355/isijinternational.41.641
  37. Creep-Resistant Steels (Eds. F. Abe, T.-U. Kern, and R. Viswanathan) (Elsevier–Woodhead Publishing: 2008)
  38. R.L. Klueh, and A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nuclear Materials, 371: 37 (2007); https://doi.org/10.1016/j.jnucmat.2007.05.005
  39. S. Raju, B. Ganesh, A. Rai, R. Mythili, S. Saroja, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, and B. Raj, Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic–martensitic steel, J. Nuclear Materials, 389: 385 (2007); https://doi.org/10.1016/j.jnucmat.2009.02.030
  40. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater., 54: 1279 (2006); https://doi.org/10.1016/j.actamat.2005.11.001
  41. N.A. Polekhina, I.Yu. Litovchenko, and A.N. Tyumentsev, Vliyanie Temperatury Otpuska na Fazovyye Prevrashcheniya v Ferritno-Martensitnoy 12%-i Khromistoy Stali EK-181 [The Effect of Tempering Temperature on Phase Transformations in Ferritic–Martensitic 12% Chromium Steel EC-181], VANT. Ser. Thermonuclear Synthesis (2014) (in Russian).
  42. D.R. Jara, 9–12% Cr Heat Resistant Steels: Alloy Design, TEM Characterization of Microstructure Evolution and Creep Response at 650 °C (Dissertation for Doctor of Engineering (Bochum: 2011).
  43. K.A. Lanskaya, Vysokokhromistye Zharoprochnye Stali [High-Chromium Heat-Resistant Steels] (Metallurgy: 1967) (in Russian).
  44. I.Yu. Litovchenko, N.A. Polekhina, and A.N. Tyumentsev, Vliyanie Rezhimov Termoobrabotki na Mikrostrukturu i Mekhanicheskie Svoistva Zharoprochnoy Ferritno-Martensitnoy 12%-oy Khromistoy Stali EK-181 [Influence of Regimes of Heat Treatment on the Microstructure and Mechanical Properties of Heat-Resistant Ferritic–Martensitic 12% Chromium Steel EC-181], VANT. Ser. Thermonuclear Synthesis (2014) (in Russian).
  45. R. Kaibyshev and I. Kazakulov, Deformation behaviour of Fe–3Si steel, Mater. Sci. Technol., 20: 221 (2004); https://doi.org/10.1179/026708304225010415
  46. A.V. Dub, V.N. Skorobogatykh, and I.A. Shchenkova, New heat-resistant chromium steels for a promising objects of power engineering, Therm. Eng., 55: 594 (2008); https://doi.org/10.1134/s0040601508070124
  47. J. Cadek, Creep in Metallic Materials (Prague: Academia: 1994).
  48. J. Pilling and N. Ridley, Superplasticity in Crystalline Solids (London: The Institute of Metals: 1989), p. 214.
  49. V.M. Chernov, M.V. Leont’eva-Smirnova, M.M. Potapenko, N.A. Polekhina, I.Yu. Litovchenko, A.N. Tyumentsev, E.G. Astafurova, and L.P. Khromova, Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and ChS-139, Tech. Phys., 61: 97 (2016); https://doi.org/10.1134/s1063784216010084
  50. I. Volokitina, E. Siziakova, R. Fediuk, and A. Kolesnikov, Development of a thermomechanical treatment mode for stainless-steel rings, Materials 15, 4930 (2022); https://doi.org/10.3390/ma15144930
  51. K.S. Chandravathi, C.S. Sasmal, and K. Laha, Effect of isothermal heat treatment on microstructure and mechanical properties of reduced activation ferritic martensitic steel, J. Nuclear Materials, 435: 128 (2013); https://doi.org/10.1016/j.jnucmat.2012.12.042
  52. R.L. Klueh, Elevated-temperature ferritic and martensitic steels and their application to future nuclear reactors (Oak Ridge National Laboratory: 2005); https://doi.org/10.2172/885938
  53. M.L. Bernstein and A.G. Rakhshtadt, Metallovedenie i Termicheskaya Obrabotka Stali: Spravochnik [Metallurgy and Heat Treatment of Steel: Handbook] (Metallurgy: 1983) (in Russian).
  54. L. Tan, D. Hoelzer, J. Busby, M. Sokolov, and R. Klueh, Microstructure control for high strength 9Cr ferritic–martensitic steels, J. Nuclear Mater., 422: 45 (2012); https://doi.org/10.1016/j.jnucmat.2011.12.011
  55. I.E. Volokitina, Evolution of the microstructure and mechanical properties of copper under ECAP with intense cooling, Metal Sci. Heat Treat., 62, Nos. 3–4: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  56. I.E. Volokitina, Effect of cryogenic cooling after ECAP on mechanical properties of aluminum alloy D16, Metal Sci. Heat Treat., 61, Nos. 3–4: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  57. S. Hollner, B. Fournier, J. Pendu, T. Cozzika, I. Tournié, J. Brachet, and A. Pineau, Journal of Nuclear Materials, 405: 101 (2010); https://doi.org/10.1016/j.jnucmat.2010.07.034
  58. S. Lezhnev, A. Naizabekov, A. Volokitin, I. Volokitina, E. Panin, and M. Knapinski, J. Chem. Technol. Metall., 52: 172 (2017).
  59. S. Hollner, E. Piozin, P. Mayr, C. Caës, I. Tournié, A. Pineau, and B. Fournier, Characterization of a boron alloyed 9Cr3W3CoVNbBN steel and further improvement of its high-temperature mechanical properties by thermomechanical treatments, J. Nuclear Mater., 441: 15 (2013); https://doi.org/10.1016/j.jnucmat.2013.05.018
  60. R.L. Klueh, N. Hashimoto, and P.J. Maziasz, New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nuclear Mater., 367: 48 (2007); https://doi.org/10.1016/j.jnucmat.2007.03.001
  61. F. Abe and S. Nakazawa, The effect of tungsten on creep behavior of tempered martensitic 9Cr steels, Metall. Mater. Trans. A, 23: 3025 (1992); https://doi.org/10.1007/bf02646120
  62. P. Wang, J. Chen, H. Fu, S. Liu, X. Li, and Z. Xu, Effect of N on the precipitation behaviours of the reduced activation ferritic/martensitic steel CLF-1 after thermal ageing, J. Nuclear Mater., 442: 9 (2013); https://doi.org/10.1016/j.jnucmat.2013.03.081
  63. K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, and S. Jitsukawa, Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system, Fusion Engineering and Design, 86: 2895 (2011); https://doi.org/10.1016/j.fusengdes.2011.06.005
  64. J. Lapeña, M. García-Mazario, P. Fernández, and A.M. Lancha, Chemical segregation behavior under thermal aging of the low-activation F82H-modified steel, J. Nuclear Mater., 283: 662 (2011); https://doi.org/10.1016/s0022-3115(00)00276-2
  65. Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk, T.L. Tepla, L.I. Bohun, and T.M. Kovbasyuk, Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue, Prog. Phys. Met., 20, No. 4: 620 (2019); https://doi.org/10.15407/ufm.20.04.620
  66. A. Naizabekov, S. Lezhnev, E. Panin, and I. Volokitina, The role of preliminary heat treatment in the formation of ultrafine-grained structure in the implementation of the combined process ‘rolling–equal channel angular pressing’, Mater. Sci. Forum, 879: 1093 (2016); https://doi.org/10.4028/www.scientific.net/msf.879.1093
  67. Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R. Kurtz, R. Lindau, T. Muroga, G. Odette, B. Raj, R. Stoller, L. Tan, H. Tanigawa, A. Tavassoli, T. Yamamoto, F. Wan, and Y. Wu, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nuclear Mater., 442: 2 (2013); https://doi.org/10.1016/j.jnucmat.2012.12.039
  68. L. Huang, X. Hu, C. Yang, W. Yan, F. Xiao, Y. Shan, and K. Yang, Influence of thermal aging on microstructure and mechanical properties of CLAM steel, J. Nuclear Mater., 443: 479 (2013); https://doi.org/10.1016/j.jnucmat.2013.08.008
  69. J. Hald, Microstructure and long-term creep properties of 9–12% Cr steels, J. Nuclear Mater., 85: 30 (2008); https://doi.org/10.1016/j.ijpvp.2007.06.010
  70. Y.Z. Shen, S.H. Kim, C.H. Han, H.D. Cho, and W.S. Ryu, TEM investigations of MN nitride phases in a 9% chromium ferritic/martensitic steel with normalization conditions for nuclear reactors, J. Nuclear Mater., 384: 48 (2008); https://doi.org/10.1016/j.jnucmat.2008.10.005
  71. L. Tan T. Byun, Y. Katoh, and L. Snead, Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation, Acta Mater., 71: 11 (2014); https://doi.org/10.1016/j.actamat.2014.03.015
  72. Y.F. Li, T. Nagasaka, T. Muroga, Q.Y. Huang, and Y.C. Wu, Effect of thermal ageing on tensile and creep properties of JLF-1 and CLAM steels, J. Nuclear Mater., 386: 495 (2009); https://doi.org/10.1016/j.jnucmat.2008.12.149
  73. H. Hadraba, and I. Dlouhy, Effect of thermal ageing on the impact fracture behaviour of Eurofer’97 steel, J. Nuclear Mater., 386, 564 (2009); https://doi.org/10.1016/j.jnucmat.2008.12.319
  74. P. Fernández, M. García-Mazario, A. M. Lancha, and J. Lapeña, Grain boundary microchemistry and metallurgical characterization of Eurofer’97 after simulated service conditions, J. Nuclear Mater., 329: 274 (2004); https://doi.org/10.1016/j.jnucmat.2004.04.055
  75. H. Sakasegawa, T. Hirose, A. Kohyama, Y. Katoh, T. Harada, K. Asakura, and T. Kumagai, Effects of precipitation morphology on toughness of reduced activation ferritic/martensitic steels, J. Nuclear Mater., 307: 490 (2002); https://doi.org/10.1016/S0022-3115(02)01083-8
  76. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metall., 56: 643 (2021).
  77. H. Tanigawa, K. Shiba, A. Möslang, R. Stoller, R. Lindau, M. Sokolov, G. Odette, R. Kurtz, and S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nuclear Mater., 417: 9 (2011); https://doi.org/10.1016/j.jnucmat.2011.05.023
  78. M. Leont’eva-Smirnova, A. Ioltukhovskiy, G. A. Arutiunova, A. Tselischev, and V. Chernov, Investigation of heat treatment conditions on the structure of 12% chromium reduced activation steels, J. Nuclear Mater., 307: 466 (2002); https://doi.org/10.1016/s0022-3115(02)01139-x
  79. W. Yan, W. Wang, Y. Shan, and K. Yang, Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels, Front. Mater. Sci., 1: 1 (2013); https://doi.org/10.1007/s11706-013-0189-5
  80. C. Kocer, T. Abe, and A. Soon, The Z-phase in 9–12% Cr ferritic steels: A phase stability analysis, Mater. Sci. Eng. A, 505: 1 (2009); https://doi.org/10.1016/j.msea.2008.10.028
  81. E. Evangelista, H. Mcqueen, M. Niewczas, and M. Cabibbo, Hot Workability of 2304 and 2205 duplex stainless steels, Canadian Metallurgical Quarterly, 43: 339 (2004); https://doi.org/10.1179/cmq.2004.43.3.339
  82. Y. Son, Y.K. Lee, K.-T. Park, C.S. Lee, and D. Shin, Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties, Acta Mater., 53: 3125 (2005); https://doi.org/10.1016/j.actamat.2005.02.015
  83. H. Zheng, X. Ye, J.-C. Li, L.-Z. Jiang, Z. Liu, W. Guanqi, and B. Wang, Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr–Ni stainless steel, Mater. Sci. Eng. A, 527: 7407 (2010); https://doi.org/10.1016/j.msea.2010.08.023
  84. V.B. Molodkin, H.I. Nizkova, Ye.I. Bogdanov, S.I. Olikhovskii, S.V. Dmitriev, M.G. Tolmachev, V.V. Lizunov, Ya.V. Vasylyk, A.G. Karpov, and O.G. Voytok, The physical nature and new capabilities of use of effects of asymmetry of azimuthal dependence of total integrated intensity of dynamical diffraction for diagnostics of crystals with the disturbed surface layer and defects, Usp. Fiz. Met., 18, No. 2: 177 (2017); https://doi.org/10.15407/ufm.18.02.177
  85. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Integrated diffractometry: achieved progress and new performance capabilities, Prog. Phys. Met., 20, No. 1: 75 (2019); https://doi.org/10.15407/ufm.20.01.075
  86. V.A. Tatarenko and C.L. Tsynman, Strain-induced and blocking effects in thermodynamics of the ordering and precipitation reactions within the off-stoichiometric close-packed-metal hydrides, Solid State Ionics, 101–103, Pt. 2: 1061 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
  87. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  88. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, High-temperature entropy effects in tetragonality of the ordering interstitial–substitutional solution based on body-centred tetragonal metal, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
  89. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Research trends and statistical-thermodynamic modeling the α″-Fe16N2-based phase for permanent magnets, Fundamentals of Low Dimensional Magnets (Eds. R.K. Gupta, S.R. Mishra, and T.A. Nguyen) (Boca Raton, USA: CRC Press: 2022), Ch. 18, p. 343; https://doi.org/10.1201/9781003197492-18
  90. A. Naizabekov, S. Lezhnev, E. Panin, and I. Volokitina, Structure and mechanical properties of steel in the process ‘pressing–drawing’, J. Mater. Eng. Perform., 28: 1762 (2019); https://doi.org/10.1007/s11665-019-3880-6
  91. A. Volokitin, A. Naizabekov, and S. Lezhnev, Research of a new method of deformation pressing–drawing on mechanical properties of steel wire, Proc. of the Metal 2013 — 22nd Int. Conf. on Metallurgy and Materials (15–17 May 2013) (Brno: 2013); p. 376.
  92. T. Hickel, B. Grabowski, F. Kormann, and J. Neugebauer, Advancing density functional theory to finite temperatures: methods and applications in steel design, J. Phys.: Cond. Matter, 24: 053202 (2012); https://doi.org/10.1088/0953-8984/24/5/053202
  93. J. Yoo and Kyung-Tae Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng. A, 496: 417 (2008); https://doi.org/10.1016/j.msea.2008.05.042
  94. J.D. Yoo, S.W. Hwang, and K.T. Park, Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel, Met. Mater. Trans. A, 40: 1520 (2009); https://doi.org/10.1007/s11661-009-9862-9
  95. S. Nambu, N. Shibuta, M. Ojima, J. Inoue, T. Koseki, and H. Bhadeshia, In situ observations and crystallographic analysis of martensitic transformation in steel, Acta Mater., 61: 4831 (2013); https://doi.org/10.1016/j.actamat.2013.04.065
  96. Martensitic Transformation (Eds. M.E. Fine, M. Meshii, and C.M. Wayman) (New York: Academic Press: 1978); https://doi.org/10.1016/b978-0-12-519850-9.X5001-7
  97. A.P. Gulyaev and N.A. Kozlova, Spetsial’nyye Stali i Splavy [Special Steels and Alloys] (Metallurgy: 1966) (in Russian).
  98. M.A. Filippov, V.S. Litvinov, and Yu.R. Nemirovsky, Stali s Metastabil’nym Austenitom [Steels with Metastable Austenite] (Metallurgy: 1988) (in Russian).
  99. A.P. Gulyaev and I.Ya. Georgieva, O Vzaimosvyazi mezhdu Kinetikoy i Strukturoy pri Martensitnykh Prevrashcheniyakh [On the Relationship between the Kinetics and Structure at the Martensitic Transformations], Phys. Met. Mater. Sci. (1971) (in Russian).
  100. V.V. Sagaradze and A.I. Uvarov, Uprochnenie Austenitnykh Staley [Strengthening of Austenitic Steels] (Nauka: 1989) (in Russian).
  101. V.F. Terentiev, Ustalostnaya Prochnost’ Metallov i Splavov [Fatigue Strength of Metals and Alloys] (Intermet, Engineering: 2002) (in Russian).
  102. E. Scheil, Über die umwandlung des austenits in martensit in eisen-nickellegierungen unter belastung, Zeitschrift für Anorganische und Allgemeine Chemie (ZAAC), 207, No. 1: 21 (1932) (in German); https://doi.org/10.1002/zaac.19322070103
  103. B.R. Banerjee, J.M. Capenos, and J.J. Hauser: Application of Fracture Toughness Parameters to Structural Metals (Gordon and Breach: 1966), p. 373.
  104. J. Tamura, T. Maki, and H. Hato, K. Aburai, J. Jpn. Inst. Met. Mater., 33: 1383 (1969).
  105. B. Rao and M. Rashid, Direct observations of deformation-induced retained austenite transformation in a vanadium-containing dual-phase steel, Mater. Characterization, 39: 435 (1997); https://doi.org/10.1016/S1044-5803(97)00156-3
  106. V.F. Terentiev, Prochnost’ Splavov [Strength of Alloys] (MISiS: 1997) (in Russian).
  107. L.I. Lysak and B.I. Nikolin, Izuchenie Rel’efa pri γ→ε Prevrashchenii na Monokristallakh Stali Fe–Mn–C [Study of a Relief during the γ→ε Transformation on the Fe–Mn–C Steel Single Crystals], Phys. Met. Mater. Sci. (1964) (in Russian).
  108. V.Yu. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Effect of cyclic martensitic γ–ε transformations on diffusion characteristics of cobalt in an iron–manganese alloy, Prog. Phys. Met., 20, No. 3: 426 (2019); https://doi.org/10.15407/ufm.20.03.426
  109. V.Y. Bondar, V.E. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Effect of cyclic martensitic γ–ε–γ transformations on diffusion characteristics of carbon in an iron–manganese alloy, Prog. Phys. Met., 19, No. 1: 70 (2018); https://doi.org/10.15407/ufm.19.01.070
  110. T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara, An experimental study of the martensite nucleation and growth in 18/8 stainless steel, Acta Met., 25: 1151 (1977); https://doi.org/10.1016/0001-6160(77)90202-4
  111. K.P. Staudhammer, L.E. Murr, and S.S. Hecker, Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: A transmission electron microscope study, Acta Met., 31: 267 (1983); https://doi.org/10.1016/0001-6160(83)90103-7
  112. H. Biermann, J. Solarek, and A. Weidner, SEM investigation of high-alloyed austenitic stainless cast steels with varying austenite stability at room temperature and 100 °C, Steel Research Int., 83: 512 (2021); https://doi.org/10.1002/srin.201100293
  113. I. Volokitina, A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, A. Volokitin, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Study of the properties of antifriction rings under severe plastic deformation, Materials, 15: 2584 (2022); https://doi.org/10.3390/ma15072584
  114. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, The use of severe plastic deformation for microstructural control, Mater. Sci. Eng. A, 324: 82 (2002); https://doi.org/10.1016/S0921-5093(01)01288-6
  115. A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53: 893 (2008); https://doi.org/10.1016/j.pmatsci.2008.03.002
  116. A. Alhamidi and Z. Horita, Grain refinement and high strain rate superplasticity in alumunium 2024 alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 622: 139 (2015); https://doi.org/10.1016/j.msea.2014.11.009
  117. Yu.S. Projdak, V.Z. Kutsova, T.V. Kotova, H.P. Stetsenko, and V.V. Prutchykova, Regularities of formation of structure, texture and properties under the combined plastic deformation of the low-carbon and ultralow-carbon steels for cold press forming, Prog. Phys. Met., 20: 213 (2019); https://doi.org/10.15407/ufm.20.02.213
  118. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I.Volokitina, The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling, Phys. Scr., 94: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  119. A. Volokitin A. Naizabekov I. Volokitina, S. Lezhnev, and E. Panin, Thermomechanical treatment of steel using severe plastic deformation and cryogenic cooling, Mater. Lett., 304: 130598 (2021); https://doi.org/10.1016/j.matlet.2021.130598
  120. C. Keller K. Tabalaiev, Gaël Marnier, J. Noudem, X. Sauvage, and E. Hug, Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder, Mater. Sci. Eng. A, 665: 125 (2016); https://doi.org/10.1016/j.msea.2016.04.039
  121. H. Ni, H. He, G. Li, and J. Liu, Preparation of nanocrystalline 430L stainless steel by HEBM and SPS, J. Iron Steel Res. Int., 15: 73 (2008); https://doi.org/10.1016/s1006-706x(08)60147-8
  122. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45: 103 (2000); https://doi.org/10.1016/s0079-6425(99)00007-9
  123. Y. Estrin and A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview, Int. J. Fatigue, 32: 898 (2010); https://doi.org/10.1016/j.ijfatigue.2009.06.022
  124. I. Volokitina, A. Volokitin, A. Naizabekov, and E.Panin, J. Chem. Technol. Metallurgy, 56: 410 (2021).
  125. Ultrafine Grained Materials III (Eds. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, T.C. Lowe) (Charlotte, North Carolina: TMS: 2004).
  126. A.B. Nayzabekov and I.E. Volokitina, Effect of the initial structural state of Cr–Mo high-temperature steel on mechanical properties after equal-channel angular pressing, Phys. Metals Metallogr., 120: 177 (2019); https://doi.org/10.1134/s0031918x19020133
  127. Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater., 61: 782 (2013); https://doi.org/10.1016/j.actamat.2012.10.038
  128. Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlow, Useful properties of twist extrusion, Mater. Sci. Eng. A, 503: 14 (2009); https://doi.org/10.1016/j.msea.2007.12.055
  129. L. Kecskes, Kyu C. Cho, R. Dowding, B. Schuster, R. Valiev, and Q. Wei, Grain size engineering of bcc refractory metals: top-down and bottom-up — application to tungsten, Mater. Sci. Eng. A, 467: 33 (2007); https://doi.org/10.1016/j.msea.2007.02.099
  130. T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A, 462: 3 (2007); https://doi.org/10.1016/j.msea.2006.02.473
  131. Z. Fan, T. Hao, S. X. Zhao, G. Luo, C. S. Liu, and F. Qianfeng, The microstructure and mechanical properties of T91 steel processed by ECAP at room temperature, J. Nuclear Mater., 434: 417 (2013); https://doi.org/10.1016/j.jnucmat.2012.12.009
  132. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, and X. Zhu, Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Mater. Res. Let., 10, No. 4: 163 (2022); https://doi.org/10.1080/21663831.2022.2029779
  133. G.G. Mayer, E.G. Astafurova, and E.V. Naidenkin, Termicheskaya Stabil’nost’ Submikrokristallicheskoy Struktury, Sformirovannoy Metodom Ravnokanal’nogo Uglovogo Pressovaniya v Nizkouglerodistykh Stalyakh s Razlichnym Fazovym Sostavom [Thermal Stability of Submicrocrystalline Structure Formed by Equal-Channel Angular Pressing in Low Carbon Steels with Different Phase Composition] (Metal Processing: 2013) (in Russian).
  134. G. Yang, C. Huang, C. Wang, L. Y. Zhang, C. Hu, Z. Zhang, and S. Wu, Mater. Sci. Eng. A, 515: 199, (2011); https://doi.org/10.1016/j.msea.2009.03.031
  135. E.G. Astafurova, G.G. Zakharova, E.V. Naydenkin, G.I. Raab, P.D. Odessky, and S.V. Dobatkin, Structural peculiarities and mechanical behavior of Fe–Mo–V–Nb–C steel after equal channel angular pressing, Lett. Mater., 1, No. 4: 198 (2011); https://doi.org/10.22226/2410-3535-2011-4-198-202
  136. J. Li, M. Umemoto, Y. Todaka, K. Fujisaku, and K. Tsuchiya, Mater. Sci., 18: 577, (2008).
  137. L.A. Maltseva and K.D. Khramtsova, Formirovanie Submikrokristallicheskogo Sostoyaniya v Austenitnoy Metastabil’noy Stali Metodami Intensivnoy Plasticheskoy Deformatsii [Formation of Submicrocrystalline State in Austenitic Metastable Steel by Severe Plastic Deformation Methods] (Vector of Science, Togliatti State University: 2013) (in Russian).
  138. M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of nano-grained structure in a 301 stainless steel using a repetitive thermo-mechanical treatment, Mater. Lett., 63: 1442 (2009); https://doi.org/10.1016/j.matlet.2009.03.043
  139. B. Kumar, S. Das, S. Sharma, and J.K. Sahu, Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel, Mater. Sci. Eng. A, 527: 875 (2010); https://doi.org/10.1016/j.msea.2009.08.075
  140. M. Gao, C. N. Reid, M. Jahedi, and Y. Li, Estimating equilibration times and heating/cooling rates in heat treatment of workpieces with arbitrary geometry, J. Mater. Eng. Perform., 9: 62 (2000); https://doi.org/10.1361/105994900770346295
  141. S. Dobatkin, O.V. Rybal’chenko, N. Enikeev, A.A. Tokar’, and M. Abramova, Formation of fully austenitic ultrafine-grained high strength state in metastable Cr–Ni–Ti stainless steel by severe plastic deformation, Mater. Lett., 166: 276, (2016); https://doi.org/10.1016/j.matlet.2015.12.094
  142. S.-J. Lee, Y.-M. Park, and Y.‐K. Lee, Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy, Materials Science and Engineering A, 515: 32, (2009); https://doi.org/10.1016/j.msea.2009.02.010