Current Trends to Obtain Metals and Alloys with Ultrafine-Grained Structure

A. B. Naizabekov$^{1}$, A. S. Kolesnikov$^{2}$, M. A. Latypova$^{3}$, T. D. Fedorova$^{1}$, and A. D. Mamitova$^{2}$

$^1$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38; 111500 Rudny, Kazakhstan
$^2$M. Auezov South Kazakhstan University, Tauke Khan Ave., 5; 160012 Shymkent, Kazakhstan
$^3$Karaganda Industrial University, Republic Ave., 30; 101400 Temirtau, Kazakhstan

Received 02.06.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
Obtaining of materials with the improved and properly balanced physical and mechanical properties remains one of the main goals of materials science. At the same time, one of the most promising ways to improve the properties of metallic materials without changing and complicating their chemical and phase compositions is to obtain ultrafine-grained states within them. Such materials are characterized by high strength and high ductility. This combination of properties is crucially important for responsible products, where the weight and size of the part is important. For example, for medical implants, which, at maintaining the strength, can be made thinner, and, if the load is exceeded, it will not be broken, damaging the surrounding tissues, but will only bend and can be subsequently replaced. Such a combination of the strength and ductility is difficult to be obtained by other methods (e.g., heat treatment). However, for the bulk ultrafine-grained materials, in addition to the requirements for a grain size, there are also requirements for the isotropism and equiaxiality of grains, the misorientation boundaries of which should be predominantly high-angle. Traditional deformation technologies (such as drawing and cold rolling) are also accompanied by structure refinement. However, in general, the substructure has a cellular character with grains elongated in the direction of drawing or rolling and contains a high proportion of low-angle boundaries. This fact contributes to the anisotropy of the properties of products in the absence of a combination of properties of high strength and ductility at the same time. Over the past 2–3 decades, the technologies of severe plastic deformation (SPD) have attracted a great interest for the production of ultrafine-grained materials. However, the growth in demand is significantly limited by the high cost of manufacturing products from such materials due to the high energy and labour intensity of their production. Therefore, this article reviews and analyses contemporary technologies for production of metals and alloys with the ultrafine-grained structure, combining both high strength and ductility, by using the relatively simple and inexpensive devices, which allow spending the minimum possible amount of time in the manufacture of products. The literature overview shows the level of the process to develop technology for obtaining the ultrafine-grained structure in metals and alloys. Such the structures provide a combination of a high level of strength characteristics with high ductility that fundamentally distinguishes such the materials from the conventional ones. This is urgent for applications, where the weight, size or special exploitation properties of the part are crucially important.

Keywords: severe plastic deformation, methods, technology, ultrafine-grained structure, properties.

DOI: https://doi.org/10.15407/ufm.23.04.629

Citation: A. B. Naizabekov, A. S. Kolesnikov, M. A. Latypova, T. D. Fedorova, and A. D. Mamitova, Current Trends to Obtain Metals and Alloys with Ultrafine-Grained Structure, Progress in Physics of Metals, 23, No. 4: 629–657 (2022)


References  
  1. I. Volokitina, A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, A. Volokitin, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Study of the properties of antifriction rings under severe plastic deformation, Materials, 15: 2584 (2022); https://doi.org/10.3390/ma15072584
  2. Yu.S. Projdak, V.Z. Kutsova, T.V. Kotova, H.P. Stetsenko, and V.V. Prutchykova, Regularities of formation of structure, texture and properties under the combined plastic deformation of the low-carbon and ultralow-carbon steels for cold press forming, Prog. Phys. Met., 20, No. 2: 213 (2019); https://doi.org/10.15407/ufm.20.02.213
  3. I.E. Volokitina, J. Chem. Technol. Metall., 55, No. 2: 479 (2020).
  4. J. Alexander and A. Tilakasiri, A study of the process of extrolling, Proc. 12th Int. Machine Tool Design and Research Conference (Ed. S.A. Tobias) (London: Palgrave Macmillan: 1980); https://doi.org/10.1007/978-1-349-05172-4_11
  5. А. Arbuz, А. Kawalek, K. Ozhmegov, H. Dyja, Е. Panin, А. Lepsibayev, Sultanbekov, and S. Rakhima, Using of radial-shear rolling to improve the structure and radiation resistance of zirconium-based alloys, Materials, 13: 4306 (2020); https://doi.org/10.3390/ma13194306
  6. R.Z. Valiev, D.V. Gunderov, M.Y. Murashkin, and I.P. Semenova, Ob’yemnyye Nanostrukturnyye Metally i Splavy s Unikal’nymi Mekhanicheskimi Svoistvami dlya Perspektivnykh Primeneniy [Bulk Nanostructured Metals and Alloys with Unique Mechanical Properties for Promising Applications] (Ufa: UGATU: 2006) (in Russian).
  7. G.G. Kurapov, E.P. Orlova, I.E. Volokitina, and A. Turdaliev, J. Chem. Technol. Metall., 51: 451 (2016).
  8. J.S.C. Jang and C.C. Koch, The hall-petch relationship in nanocrystalline iron produced by ball milling, Scr. Met. Mater., 24: 1599 (1990); https://doi.org/10.1016/0956-716x(90)90439-n
  9. R.Z. Valiev, Nanomaterial advantage, Nature, 419: 887 (2003); https://doi.org/10.1038/419887a
  10. R.Z. Valiev, Superior strength in ultrafine-grained materials produced by SPD processing, Mater. Trans., 55: 13 (2014); https://doi.org/10.2320/matertrans.ma201325
  11. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy, J. Mater. Res., 11: 1880 (1996); https://doi.org/10.1557/jmr.1996.0239
  12. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, The use of severe plastic deformation for microstructural control, Mater. Sci. Eng. A, 324: 82 (2002); https://doi.org/10.1016/S0921-5093(01)01288-6
  13. T.G. Langdon, Rev. Adv. Mater. Sci., 13: 6 (2006).
  14. E.G. Pashinskaya, Fiziko-Mekhanicheskie Osnovy Izmel’cheniya Struktury pri Kombinirovannoy Plasticheskoy Deformatsii [Physico-Mechanical Foundations of the Structure Grinding under the Combined Plastic Deformation] (Donetsk: ‘Veber’: 2009) (in Russian);
  15. K.S. Nadirov, M.K. Zhantasov, G.Z. Bimbetova, A.S. Kolesnikov, A.S. Sadyrbayeva, A.K. Orynbasarov, A.N. Kutzhanova, R.S. Turemuratov, N.E.Botabaev, and D. Zhantasova, Chemistry Today, 34: 72 (2016).
  16. A. Naizabekov and I. Volokitina, Influence of equal-channel angular pressing on changes in the microstructure of steel grade 1055, Metallurgist, 64: 1029 (2021); https://doi.org/10.1007/s11015-021-01083-3
  17. A. Volokitin, A. Naizabekov, and S. Lezhnev, Int. Conf. Metallurgy and Materials (Brno, Czech Republic: 2013), p. 376.
  18. A. Javaid and F. Czerwinski, Progress in twin roll casting of magnesium alloys: a review, J. Magnesium and Alloys, 9, No. 2: 362 (2021); https://doi.org/10.1016/j.jma.2020.10.003
  19. C.C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostructured Materials, 9, No. 1: 13 (1997); https://doi.org/10.1016/s0965-9773(97)00014-7
  20. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev, Microstructures and properties of nanocomposites obtained through SPTS consolidation of powders, Met. Mater. Trans. A, 29: 2253 (1998); https://doi.org/10.1007/s11661-998-0103-4
  21. A.V. Volokitin, K.A. Kambarov, and M.A. Latypova, Effect of extrusion and drawing deformation method on aluminum alloy 6101 structure and mechanical properties, Metal Sci. Heat Treatment, 63: 341 (2021); https://doi.org/10.1007/s11041-021-00692-8
  22. K. Muszka, M. Wielgus, J. Majta, K. Doniec, and M. Stefanska-Kaclziela, Influence of strain path changes on microstructure inhomogeneity and mechanical behavior of wire drawing products, Mater. Sci. Forum, 654–656: 314 (2010); https://doi.org/10.4028/www.scientific.net/MSF.654-656.314
  23. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Integrated diffractometry: achieved progress and new performance capabilities, Prog. Phys. Met., 20, No. 1: 75 (2019); https://doi.org/10.15407/ufm.20.01.075
  24. V.B. Molodkin, H.I. Nizkova, Ye.I. Bogdanov, S.I. Olikhovskii, S.V. Dmitriev, M.G. Tolmachev, V.V. Lizunov, Ya.V. Vasylyk, A.G. Karpov, and O.G. Voytok, The physical nature and new capabilities of use of effects of asymmetry of azimuthal dependence of total integrated intensity of dynamical diffraction for diagnostics of crystals with the disturbed surface layer and defects, Usp. Fiz. Met., 18, No. 2: 177 (2017); https://doi.org/10.15407/ufm.18.02.177
  25. V.A. Tatarenko and C.L. Tsynman, Strain-induced and blocking effects in thermodynamics of the ordering and precipitation reactions within the off-stoichiometric close-packed-metal hydrides, Solid State Ionics, 101–103, Pt. 2: 1061 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
  26. A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53, No. 6: 893 (2008); https://doi.org/10.1016/j.pmatsci.2008.03.002
  27. A. Volokitin A. Naizabekov I. Volokitina, S. Lezhnev, and E. Panin, Effect of cryogenic cooling after ECAP on mechanical properties of aluminum alloy D16, Mater. Lett., 304: 130598 (2021); https://doi.org/10.1016/j.matlet.2021.130598
  28. C. Xu, Z. Horita, and T.G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Mater., 55: 203 (2007); https://doi.org/10.1016/j.actamat.2006.07.029
  29. S. Erbel, Mechanical properties and structure of extremely strainhardened copper, Met. Technol., 6, No. 1: 482 (1979); https://doi.org/10.1179/030716979803276363
  30. https://vuzlit.com/40253/intensivnaya_plasticheskaya_deformatsiya_krucheniem
  31. Patent No. 2547984 (RU), 2012.
  32. Patent No. 2391414 (RU), 2010.
  33. Patent No. 2382687 (RU), 2010.
  34. Patent No. 98107870 (RU), 2001.
  35. A. Alhamidi and Z. Horita, Grain refinement and high strain rate superplasticity in alumunium 2024 alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 622: 139 (2015); https://doi.org/10.1016/j.msea.2014.11.009
  36. V.M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A, 197, No. 2: 157 (1995); https://doi.org/10.1016/0921-5093(95)09705-8
  37. R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51, No. 7: 881 (2006); https://doi.org/10.1016/j.pmatsci.2006.02.003
  38. S. Lezhnev, I. Volokitina, and Т. Koinov, J. Chem. Technol. Metall., 49: 621 (2014).
  39. Patent No. 2181314 (RU), 2002.
  40. O. Krivtsova, V. Talmazan, A. Arbuz, and G. Sivyakova, Study the process of equal-channel angular pressing with quasi-ultra-small angles of joint channels using computer modeling in program complex DEFORM, Adv. Mater. Res., 1030–1032: 1337 (2014); https://doi.org/10.4028/www.scientific.net/amr.1030-1032.1337
  41. Patent No. 2240197 (RU), 2004.
  42. Patent No. 2379148 (RU), 2010.
  43. A.S. Kolesnikov, B.Ye. Zhakipbaev, N.N. Zhanikulov, O.G. Kolesnikova, Е.K. Аkhmetova, R.M. Kuraev, and A.L. Shal, Rasayan J. Chem., 14, No. 2: 997 (2021); https://doi.org/10.31788/rjc.2021.1426229
  44. Patent No. EP1861211 (ЕU), 2007.
  45. L. Olejnik and A. Rosochowski, Bull. Polish Acad. Sci. Tech. Sci., 53: 413 (2005).
  46. V.Z. Spuskanyuk, T.E. Konstantinova, A.A. Davydenko, I.M. Kovalenko, T.A. Zakoretskaya, L.F. Sennikova, N.N. Belousov, L.V. Loladze, and A.V. Zavdoveev, Ravnokanal’naya Uglovaya Gidroehkstruziya — Ehffektivnyy Metod Formirovaniya Submikrostrukturnogo Sostoyaniya Materialov [Equilateral Angle Hydroextrusion — an Effective Method of forming a Submicrostructural State of Materials] (Kramatorsk: 2007) (in Russian).
  47. I.E. Volokitina, Evolution of the microstructure and mechanical properties of copper under ECAP with intense cooling, Metal Sci. Heat Treat., 62, Nos. 3–4: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  48. I.E. Volokitina, Effect of cryogenic cooling after ECAP on mechanical properties of aluminum alloy D16, Metal Sci. Heat Treat., 61, Nos. 3–4: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  49. Zh.A. Ashkeev, A.B. Naizabekov, S.N. Lezhnev, and A.R. Toleuova, Steel in Translation, 18: 98 (2005).
  50. S. Lezhnev, A. Naizabekov, A. Volokitin, I. Volokitina, E. Panin, and M. Knapinski, J. Chem. Technol. Metall., 52: 172 (2017).
  51. Y. Beygelzimer, D. Orlov, and V. Varyukhin, A new severe plastic deformation method: twist extrusion, Ultrafine Grained Materials II (Eds. Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Setniatin, M.J. Saran, and T.C. Lowe) (Warrendale, Pennsylvania: The Minerals, Metals and Materials Society: 2002), p. 297; https://doi.org/10.1002/9781118804537.ch35
  52. Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful properties of twist extrusion, Mater. Sci. Eng. A, 503: 14 (2009); https://doi.org/10.1016/j.msea.2007.12.055
  53. M. Richert, Q. Liu, and N. Hansen, Mater. Sci. Eng. A, 260: 275 (1999); https://doi.org/10.1016/s0921-5093(98)00988-5
  54. M. Richert, S. Hawrytkiewicz, J. Richert, and J. Zasadziński, Perspective of nanomaterials production, by cyclic extrusion compression method of exerting unconventional, large plastic deformations, Solid State Phenom., 101: 307 (2005); https://doi.org/10.4028/www.scientific.net/ssp.101-102.37
  55. G.A. Salishev, O.R. Valiakhmetov, and R.M. Galeyev, Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, J. Mater. Sci., 28: 2898 (1993); https://doi.org/10.1007/bf00354692
  56. M. Kwapisz, M. Knapiński, H. Dyja, and K. Laber, Arch. Metallurgy and Materials, 56: 487 (2011); https://doi.org/10.2478/v10172-011-0052-6
  57. A. Naizabekov, S. Lezhnev, E. Panin, and I. Volokitina, The role of preliminary heat treatment in the formation of ultrafine-grained structure in the implementation of the combined process “rolling–equal channel angular pressing”, Materials Science Forum, 879: 1093 (2016); https://doi.org/10.4028/www.scientific.net/msf.879.1093
  58. A.V. Volokitin, A.B. Naizabekov, E.A. Panin, A.O. Tolkushkin, and T.A. Koinov, J. Chemical Technology and Metallurgy, 57, No. 2: 367 (2022).
  59. K.S. Nadirov, M.K. Zhantasov, B.A. Sakybayev, A.K. Orynbasarov, G.Z. Bimbetova, A.S. Sadyrbayeva, A.S. Kolesnikov, H.A. Ashirbayev, D.M. Zhantasova, and A.M. Tuleuov, The study of the gossypol resin impact on adhesive properties of the intermediate layer of the pipeline three-layer rust protection coating, Int. J. Adhesion and Adhesives, 78: 195 (2017); https://doi.org/10.1016/j.ijadhadh.2017.07.001
  60. Y.N. Loginov and S.P. Burkin, Issledovanie Protsessa Pressovaniya Cherez Vrashchayushchuyusya Matritsu [Investigation of the Pressing Process through a Rotating Matrix] (News of Universities: Ferrous Metallurgy: 1995) (in Russian).
  61. Patent No. 13768U (UА), 2006.
  62. E.G. Pashinskaya and A.A. Tolpa, Vozmozhnosti Intensivnoy Prokatki so Sdvigom dlya Formirovaniya Ul’tramelkozernistoy Struktury na Primere Uglerodistoy Ehvtektoidnoy Stali [The Possibilities of Intensive Rolling with Shear for the Formation of an Ultrafine-Grained Structure on the Example of Carbon Eutectoid Steel] (Metals: 2004) (in Russian).
  63. B.B. Bykhin, A.A. Kanaev, A.F. Kapushchak, T.B. Kapkina, and A.T. Kanaev, Steel in Translation, 29: 63 (1999).
  64. Patent No. 2293619 (RU), 2007.
  65. M. Hawryluk, J. Ziemba, and P. Sadowski, A review of current and new measurement techniques used in hot die forging processes, Measurement and Control, 50, No. 3: 74 (2017); https://doi.org/10.1177/0020294017707161
  66. S.P. Galkin, Radial shear rolling as an optimal technology for lean production, Steel (in Translation), 44, No. 1: 61 (2014); https://doi.org/10.3103/s0967091214010069
  67. N.V. Lopatin, G.A. Salishchev, and S.P. Galkin, Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure, Russ. J. Non-Ferrous Metals, 52: 442 (2011); https://doi.org/10.3103/S1067821211050075
  68. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metall., 56: 643 (2021).
  69. M.I. Latypov, M.G. Lee, Y. Beygelzimer, D. Prilepo, Y. Gusar, and H.S. Kim, Modeling and characterization of texture evolution in twist extrusion, Metallurgical and Materials Transactions A, 47: 1248 (2016); https://doi.org/10.1007/s11661-015-3298-1
  70. Patent No. 2009737 (RU), 1994.
  71. V.I. Betekhtin, V. Sklenicka, A.G. Kadomtsev, Yu R. Kolobov, and M.V. Narykova, Defect structure and thermomechanical stability of nano- and microcrystalline titanium obtained by different methods of intense plastic deformation, Phys. Solid State, 59: 960 (2017); https://doi.org/10.1134/s1063783417050043
  72. G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP–Conform, Mater. Sci. Eng. A, 382: 30 (2004); https://doi.org/10.1016/j.msea.2004.04.021
  73. I.P. Semenova, A.V. Polyakov, G.I. Raab, T.C. Lowe, and R.Z. Valiev, Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform, J. Mater. Sci., 47, 22: 7777 (2012); https://doi.org/10.1007/s10853-012-6675-9
  74. G.I. Raab, F.F. Safin, T.C. Lowe, Y.T. Zhu, and R.Z. Valiev, TMS Annual Meeting 2006, p. 171.
  75. M. Duchek, T. Kubina, J. Hodek, and J. Dlouhy, Materials and Technology, 4: 515 (2013).
  76. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  77. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Statistical thermodynamics and ordering kinetics of D019-type phase: application of the models for h.c.p.-Ti–Al alloy, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/ssp.138.283
  78. Patent No. 6,399215 (US), 2002.
  79. S.B. Sidelnikov, Tsvetnaya Metallurgiya, 3: 45 (2005).
  80. S.B. Sidelnikov, N.N. Dovzhenko, and R.I. Galiev, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 4: 49 (2003).
  81. Patent No. 2334574 (RU), 2008.
  82. Patent No. 111659 (RU), 2012.
  83. Patent No. 2100136 (RU), 1997.
  84. Patent No. 2200644 (RU), 2003.
  85. Patent No. 2064364 (RU), 2003.
  86. O.S. Lekhov, V.V. Turlaev, and I.V. Lisin, Issledovanie Sovmeshchennogo Protsessa Nepreryvnogo Lit’ya i Deformatsii dlya Proizvodstva Bimetallicheskikh Polos [Investigation of the Combined Process of Continuous Casting and Deformation to Produce the Bimetallic Strips] (Vestnik MSTU: 2012) (in Russian).
  87. S. Lezhnev, E. Panin, and I. Volokitina, Research of combined process “rolling–pressing” influence on the microstructure and mechanical properties of aluminium, Adv. Mater. Res., 814: 68 (2013); https://doi.org/10.4028/www.scientific.net/amr.814.68
  88. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling, Phys. Scr., 94: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  89. S. Lezhnev, A. Naizabekov, and E. Panin, Int. Conf. Metallurgy and Ma-terials (Brno, Czech Republic: 2013), p. 272.
  90. Patent No. 2349403 (RU), 2008.
  91. Patent No. 2184657 (RU), 2002.
  92. Patent No. 2278747 (RU), 2006.
  93. Patent No. 2347631 (RU), 2009.
  94. Patent No. 2446027 (RU), 2012.
  95. M.V. Chukin and D.G. Emaleeva, Proektirovanie Instrumenta dlya Ravnokanal’noy Uglovoy Protyazhki Provoloki [Designing a Tool for Equal Channel Angular Wire Drawing] (News of TulGU. Technical sciences: 2014) (in Russian).
  96. E. Azbanbayev, A. Isagulov, and B. Shayakhmetov, Metalurgia International, 18: 86 (2013).
  97. A.B. Naizabekov and E.M. Azbanbayev, Technology of Production of Metals and Secondary Materials, 1: 178 (2011).
  98. S. Lezhnev, A. Naizabekov, E. Panin, I. Volokitina, and A. Arbuz, Graded microstructure preparation in austenitic stainless steel during radial-shear rolling, Metallurgist, 64: 1150 (2021); https://doi.org/10.1007/s11015-021-01100-5
  99. A. Naizabekov, S. Lezhnev, and A. Arbuz, Int. Conf. Metallurgy and Ma-terials (Brno, Czech Republic: 2013), p. 422.
  100. https://bwe.co.uk/brochure
  101. W. Voorhees, Light Metal Age, 36: 18 (1978).
  102. A. Javaid and F. Czerwinski, Progress in twin roll casting of magnesium alloys: a review, J. Magnesium and Alloys, 9, No. 2: 362 (2021); https://doi.org/10.1016/j.jma.2020.10.003
  103. Patent No. 6895795 (USA), 2005.
  104. S. Lezhnev, A. Naizabekov, A. Arbuz, E. Panin, I. Volokitina, and G. Gaydarenko, Study of deformation of aluminium alloy in equal channel angular matrix with quasi-small channels intersection angle, J. Metallic Mater. Res., 1: 32 (2018); https://doi.org/10.30564/jmmr.v1i1.312
  105. https://elar.urfu.ru/bitstream/10995/33430/1/itvmim_2014_72.pdf