Thermomechanical Treatment of Stainless Steel Piston Rings

A. V. Volokitin$^1$, I. E. Volokitina$^2$, and E. A. Panin$^1$

$^1$Karaganda Industrial University, Republic Ave., 30, 101400 Temirtau, Kazakhstan
$^2$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38, 111500 Rudny, Kazakhstan

Received 23.02.2022; final version — 07.05.2022 Download PDF logo PDF

Abstract
We study the influence of thermomechanical processing, namely, severe plastic deformation by high-pressure torsion and cryogenic cooling, on the change of the microstructure and mechanical properties of the piston rings made of AISI-316 stainless steel. The deformation of the annular workpieces is carried out in a tool of a new design, the key feature of which is a double helix system. In the first part of the experiment, an estimation simulation of the high-pressure torsion process is carried out in a new matrix design. To estimate the process possibility, the main technological parameters of the process are varied in order to determine the most optimal conditions. Parameters such as the workpiece heating temperature, the upper striker vertical speed, and the friction coefficient at the contact of the workpiece with the tool are selected. The stress–strain state of the annular workpiece during deformation is also studied. At the second stage of the study, a laboratory experiment on the annular blanks deformation is performed. The microstructure evolution and mechanical properties of deformed workpieces after 8 cycles of deformation by high-pressure torsion at cryogenic temperature are studied. All the metallographic studies are carried out using the modern methods such as transmission electron microscopy and analysis of diffraction patterns of back-reflected electrons. As a deformation result, a nanocrystalline structure with a size of 30–40 microns with a large number of large-angle boundaries and a high complex of mechanical properties is obtained. The tensile strength rises from 595 MPa to 1965 MPa, while the yield strength rises from 320 to 1280 MPa. The plasticity value decreases from 55% to 24% as compared to the initial state, but it remains at a sufficient level to be applied.

Keywords: severe plastic deformation, piston rings, stainless steel, microstructure, mechanical properties, cryogenic cooling.

DOI: https://doi.org/10.15407/ufm.23.03.411

Citation: A. V. Volokitin, I. E. Volokitina, and E. A. Panin, Thermomechanical Treatment of Stainless Steel Piston Rings, Progress in Physics of Metals, 23, No. 3: 411–437 (2022)


References  
  1. V. Kumar, S.K. Sinha, and A.K. Agarwal, J. Tribology, 141, No. 3: 031301 (2019); https://doi.org/10.1115/1.4041762
  2. J. Christiansen, P. Klit, A. Volund, and J.-H. Hwang, Int. Conf. BALTTRIB 2007 (November 21–23, 2007) (Kaunas: 2007), p. 16.
  3. T.O. Olugbade and J. Lu, Nano Mater. Sci., 2: 3 (2020); https://doi.org/10.1016/j.nanoms.2020.04.002
  4. Z. Ren, R. Chiang, H. Qin, V.K. Vasudevan, G.L. Doll, Y. Dong, and C. Ye, Wear, 458–459: 203398 (2020); https://doi.org/10.1016/j.wear.2020.203398
  5. L. Junwei, O. Zipeng, L. Shiqiang, J. Yong, and H. Yuanzhi, Met. Sci. Heat Treat., 59: 50 (2017); https://doi.org/10.1007/s11041-017-0101-5
  6. K.O. Kostyk, V.O. Kostyk, and V.D. Kovalev, Prog. Phys. Met., 22, No. 1: 78 (2021); https://doi.org/10.15407/ufm.22.01.078
  7. C.C. Koch, Nanostruct. Mater., 9, Nos. 1–8: 13 (1997); https://doi.org/10.1016/S0965-9773(97)00014-7
  8. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev, Metall. Mater. Trans. A, 29: 2253 (1998); https://doi.org/10.1007/s11661-998-0103-4
  9. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, Mater. Sci. Eng. A, 324, Nos. 1–2: 82 (2002); https://doi.org/10.1016/S0921-5093(01)01288-6
  10. T.G. Langdon, Acta Mater., 61, No. 19: 7035 (2013); https://doi.org/10.1016/j.actamat.2013.08.018
  11. R.Z. Valiev, Mater. Trans., 55, No. 1: 13 (2014); https://doi.org/10.2320/matertrans.MA201325
  12. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45, No. 3: 103 (2000); https://doi.org/10.1016/S0079-6425(99)00007-9
  13. S. Lezhnev, A. Naizabekov, and I. Volokitina, J. Chem. Technol. Metallurgy, 52: 626 (2017).
  14. A. Jäger and V. Gärtnerová, Philos. Mag. Lett., 92, No. 8: 384 (2012); https://doi.org/10.1080/09500839.2012.682740
  15. E. Mostaed, A. Fabrizi, F. Bonollo, and M. Vedani, Metallurgia Italiana, 11–12: 5 (2015).
  16. C. Banjongprasert, A. Jak-Ra, C. Domrong, U. Patakham, W. Pongsaksawad, and T. Chairuangsri, Arch. Metallurgy Mater., 60, No. 2: 887 (2015); https://doi.org/10.1515/amm-2015-0224
  17. I. Sabirov, M.T. Perez-Prado, M. Murashkin, J.M. Molina-Aldareguia, E.V. Bobruk, N.F. Yunusova, and R.Z. Valiev, Int. J. Mater. Form., 3: 411 (2010); https://doi.org/10.1007/s12289-010-0794-0
  18. A.B. Naizabekov, Zh.A. Ashkeev, S.N. Lezhnev, and A.R. Toleuova, Steel in Translation, 35, No. 2: 37 (2005).
  19. O. Krivtsova, V. Talmazan, A. Arbuz, G. Sivyakova, Adv. Mater. Res., 1030–1032: 1337 (2014); https://doi.org/10.4028/www.scientific.net/amr.1030-1032.1337
  20. R. Comaneci, L.G. Bujoreanu, C. Baciu, A.M. Predescu, and D. Savastru, Optoelectronics and Advanced Materials — Rapid Communications, 9, Nos. 9–10: 1322 (2015).
  21. V.A. Beloshenko, A.V. Voznyak, Y.V. Voznyak, L.A. Novokshonova, V.G. Grinyov, and V.G. Krasheninnikov, Int. J. Polymer Sci., 2016: 8564245 (2016); https://doi.org/10.1155/2016/8564245
  22. L. Olejnik and A. Rosochowski, Bull. Polish Acad. Sci. — Tech. Sci., 53, No. 4: 413 (2005).
  23. P.M. Keshtiban, M. Zadshakouyan, and G. Faraji, Trans. Indian Inst. Metals, 69: 1793 (2016); https://doi.org/10.1007/s12666-016-0840-9
  24. Y. Liu, Z.X. Kang, L.L. Zhou, J.Y. Zhang, and Y.Y. Li, Corrosion Eng. Sci. Technol., 51, No. 4: 256 (2016); https://doi.org/10.1179/1743278215Y.0000000050
  25. V.A. Andreyachshenko and A.B. Naizabekov, Metalurgija, 55: 353 (2016); https://doaj.org/article/67e9e72103854d469a60c23763e3461a.
  26. F.J. Kalahroudi, A.R. Eivani, H.R. Jafarian, A. Amouri, and R. Gholizadeh, Mater. Sci. Eng. A, 667: 349 (2016); https://doi.org/10.1016/j.msea.2016.04.087
  27. J.G. Kim, M. Latypov, N. Pardis, Y.E. Beygelzimer, and H.S. Kim, Mater. Design, 83: 858 (2015); http://doi.org/10.1016/j.matdes.2015.06.034
  28. Sh.R. Bahadori, K. Dehghani, and S.A.A.A. Mousavi, Mater. Lett., 152: 48 (2015); https://doi.org/10.1016/j.matlet.2015.03.063
  29. M.I. Latypov, M.G. Lee, Y. Beygelzimer, D. Prilepo, Y. Gusar, and H.S. Kim, Metall. Mater. Trans. A, 47: 1248 (2016); https://doi.org/10.1007/s11661-015-3298-1
  30. M. Hawryluk, J. Ziemba, and P. Sadowski, Measurement and Control, 50, No. 3: 74 (2017); https://doi.org/10.1177/0020294017707161
  31. B. Cherukuri, T.S. Nedkova, and R. Srinivasan, Mater. Sci. Eng. A, 410–411: 394 (2005); https://doi.org/10.1016/j.msea.2005.08.024
  32. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater. Sci., 60: 130 (2014); https://doi.org/10.1016/j.pmatsci.2013.09.002
  33. Y. Estrin and A. Vinogradov, Acta Mater., 61, No. 3: 782 (2013); https://doi.org/10.1016/j.actamat.2012.10.038
  34. R.Z. Valiev and I.V. Aleksandrov, Nanostrukturnyye Materialy, Poluchennyye Intensivnoy Plasticheskoy Deformatsiey [Nanostructural Materials Obtained by the Severe Plastic Deformation] (Moscow: LOGOS: 2000) (in Russian).
  35. A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci., 53, No. 6: 893 (2008); https://doi.org/10.1016/j.pmatsci.2008.03.002
  36. C. Xu, Z. Horita, and T.G. Langdon, Acta Mater., 55, No. 1: 203 (2007); https://doi.org/10.1016/j.actamat.2006.07.029
  37. M. Jahedi, M. Knezevic, and M.H. Paydar, J. Mater. Eng. Perform., 24: 1471 (2015); http://doi.org/10.1007/s11665-015-1426-0
  38. S. Erbel, Met. Tech., 6, No. 1: 482 (1979); https://doi.org/10.1179/030716979803276363
  39. A. Alhamidi and Z. Horita, Mater. Sci. Eng. A, 622: 139 (2015); https://doi.org/10.1016/j.msea.2014.11.009
  40. W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, and K.J. Kurzydlowski, J. Mater. Process. Tech., 205, Nos. 1–3: 173 (2008); https://doi.org/10.1016/j.jmatprotec.2007.11.103
  41. W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du, and J. Hu, J. Alloys Compd., 678: 506 (2016); https://doi.org/10.1016/j.jallcom.2016.04.035
  42. S.K. Panigrahi, R. Jayaganthan, V. Pancholi, and M. Gupta, Mater. Chem. Phys., 122, No. 1: 188 (2010); https://doi.org/10.1016/j.matchemphys.2010.02.032
  43. S. Ramesh Kumar, K. Gudimetla, B. Tejaswi, and B. Ravisankar, Trans. Indian Inst. Met., 70: 639 (2017); https://doi.org/10.1007/s12666-017-1073-2
  44. V.L. Niranjani, K.C.H. Kumar, and V.S. Sarma, Mater. Sci. Eng. A, 515, Nos. 1–2: 169 (2009); https://doi.org/10.1016/j.msea.2009.03.077
  45. I.E. Volokitina, J. Chem. Technol. Metall., 55, No. 2: 479 (2020); https://dl.uctm.edu/journal/node/j2020-2/29_18-214_p_479-485.pdf
  46. Y.S. Li, N.R. Tao, and K. Lu, Acta Mater., 56: 230 (2008); https://doi.org/10.1016/j.actamat.2007.09.020
  47. I.E. Volokitina, S.N. Lezhnev, E.P. Orlova, and G.G. Kurapov, Key Eng. Mater., 684: 346 (2016); https://doi.org/10.4028/www.scientific.net/KEM.684.346
  48. R. Kaibyshev, D. Zhemchuzhnikova, and A. Mogucheva, Mater. Sci. Forum, 735: 265 (2013); https://doi.org/10.4028/www.scientific.net/MSF.735.265
  49. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals Metallogr., 118: 1167 (2017); https://doi.org/10.1134/S0031918X17110072
  50. P. Frint, M.F.-X. Wagner, S. Weber, S. Seipp, S. Frint, and T. Lampke, J. Mater. Process. Tech., 239: 222 (2017); https://doi.org/10.1016/j.jmatprotec.2016.08.032
  51. G.G. Kurapov, E.P. Orlova, I.E. Volokitina, and A. Turdaliev, J. Chem. Technol. Metallurgy, 51: 451 (2016).
  52. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res., 17, No. 1: 5 (2002); https://doi.org/10.1557/JMR.2002.0002
  53. M. Gzyl, A. Rosochowski, E. Yakushina, and P. Wood, Key Eng. Mater., 554–557: 876 (2013); https://doi.org/10.4028/www.scientific.net/KEM.554-557.876
  54. B. Gopi, N. Naga Krishna, K. Venkateswarlu, and K. Sivaprasad, Int. J. Mater. Met. Eng., 6, No. 1: 67 (2012); https://doi.org/10.5281/zenodo.1058899
  55. X.H. Chen and L. Lu, Scr. Mater., 57, No. 2: 133 (2007); https://doi.org/10.1016/j.scriptamat.2007.03.029
  56. G. Purcek, O. Saray, M.I. Nagimov, A.A. Nazarov, I.M. Safarov, V.N. Danilenko, O.R. Valiakhmetov, and R.R. Mulyukov, Philos. Mag., 92, No. 6: 690 (2012); https://doi.org/10.1080/14786435.2011.634842
  57. Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature, 419: 912 (2002); https://doi.org/10.1038/nature01133
  58. A. Glezer, M. Plotnikova, S. Dobatkin, N. Perov, and A. Shalimova, Mater. Sci. Forum, 667–669: 1077 (2011); https://doi.org/10.4028/www.scientific.net/MSF.667-669.1077
  59. S. Malekjani, P.D. Hodgson, P. Cizek, I. Sabirov, and T.B. Hilditch, Int. J. Fatigue, 33, No. 5: 700 (2011); https://doi.org/10.1016/j.ijfatigue.2010.11.025
  60. A. Volokitin, A. Naizabekov, I. Volokitina, S. Lezhnev, and E. Panin, Mater. Lett., 304: 130598 (2021); https://doi.org/10.1016/j.matlet.2021.130598
  61. D.S. Nadig, V. Ramakrishnan, P. Sampathkumaran, and C.S. Prashanth, AIP Conf. Proc., 1435: 133 (2012); https://doi.org/10.1063/1.4712089
  62. A. Volokitin, I. Volokitina, E. Panin, A. Naizabekov, and S. Lezhnev, Metalurgija, 60, Nos. 3–4: 325 (2021); https://hrcak.srce.hr/256099
  63. A.V. Volokitin, A.B. Naizabekov, I.E. Volokitina, and D.N. Lavrinyuk, XVIII Int. Cong. ‘Machines. Technologies. Materials’ (March 10–13, 2021) (Borovets: 2021), vol. 1, p. 48 (in Russian).
  64. R. Bidulský, J. Bidulská, F.S. Gobber, T. Kvačkaj, P. Petroušek, M. Actis-Grande, K.-P. Weiss, and D. Manfredi, Materials, 13, No. 15: 3328 (2020); https://doi.org/10.3390/ma13153328
  65. M. Odnobokova, A. Belyakov, and R. Kaibyshev, Adv. Eng. Mater., 17, No. 12: 1812 (2015); https://doi.org/10.1002/adem.201500100
  66. A.V. Volokitin, S.N. Lezhnev, E.A. Panin, and T.D. Fedorova, XVIII Int. Cong. ‘Machines. Technologies. Materials’ (March 10–13, 2021) (Borovets: 2021), vol. 1, p. 52 (in Russian).