Phase and Structural Transformations in the Fe-Based Alloys under the Combined High-Energy Treatment

V. Yu. Danilchenko, Ye. M. Dzevin, and O. M. Semyrga

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 20.01.2022; final version — 04.04.2022 Download PDF logo PDF

Abstract
Applying the x-ray, metallographic, and microdurometric methods, the phase composition and structural–stress state of the Fe-based alloys under the impact of electrospark treatment in combination with laser processing are studied and analysed. As shown, the structural–phase state of electrospark coating on the steel substrate is determined by several factors. They are the dissociation of WC carbide on the surface of alloying electrode on the W2C and W components followed by their erosion, an interaction of erosion products with elements of the interelectrode medium (C, N, O), an interdiffusion of the coating elements and a steel substrate, and the ascending diffusion of C from the substrate near-surface layers. As revealed, the heterophase coating and near-surface layers of substrate possess a complex structural–stress state. As shown, the residual stresses in different phase components have been formed through different regularities: the tensile stresses in the TiC-based compound, while the compressed stresses in the W2C, W, and Feα. The selective effect of laser heating of the coating on the stresses of different signs is revealed.

Keywords: electrospark treatment, laser treatment, residual stress, martensitic transformation, erosion, diffusion, mass transfer, carbide, nitride.

Citation: V. Yu. Danilchenko, Ye. M. Dzevin, and O. M. Semyrga, Phase and Structural Transformations in the Fe-Based Alloys under the Combined High-Energy Treatment, Progress in Physics of Metals, 23, No. 2: 296–336 (2022)


References  
  1. X. Wei , Z. Chen, J. Zhong, and Y. Xiang, Feasibility of preparing Mo2FeB2-based cermet coating by electrospark deposition on high speed steel, Surf. Coat. Technol., 296: 58 (2016); https://doi.org/10.1016/j.surfcoat.2016.03.090
  2. A.A. Burkov, S.A. Pyachin, M.A. Ermakov, and A.V. Syuy, In situ synthesis and characterization of Fe-based metallic glass coatings by electrospark deposition technique, Journal of Materials Engineering and Performance, 26, No. 2: 901 (2017); https://doi.org/10.1007/s11665-016-2493-6
  3. S.H. Baghjari, F.M. Ghaini, H.R. Shahverdi, C.M. Barella, and D. Ripamonti, Laser welding of niobium to 410 steel with a nickel interlayer produced by electro spark deposition, Materials and Design, 107: 108 (2016); https://doi.org/10.1016/j.matdes.2016.06.022
  4. R. Yamanoglu, N. Gulsoy, E.A. Olevsky, and H.O. Gulsoy, Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering, J. Alloys Compd., 680: 654 (2016); https://doi.org/10.1016/j.jallcom.2016.04.176
  5. K. Soma Raju, N.H. Faisal, D.S. Rao, S.V. Joshi, and G. Sundararajan, Electro-spark coatings for enhanced performance of twist drills, Surf. Coat. Technol., 202: 1636 (2008); https://doi.org/10.1016/j.surfcoat.2007.07.084
  6. M. Scendo, N. Radek, and J. Trela, The influence of electrospark and laser treatment upon corrosive resistance of carbon steel, Adv. Mater. Res., 874: 107 (2014); https://doi.org/10.4028/www.scientific.net/AMR.874.107
  7. D.W. Heard, J. Boselli, R. Rioja, E.A. Marquis, R. Gauvin, and M. Brochu, Interfacial morphology development and solute trapping behavior during rapid solidification of an Al–Li–Cu alloy, Acta. Mater., 61: 1571 (2013); https://doi.org/10.1016/j.actamat.2012.11.034
  8. V.Y. Bondar, V.E. Danilchenko, A.V. Filatov, V.F. Mazanko, and V.E. Iakovlev, Effect of cyclic martensitic γ–ε–γ transformations on diffusion characteristics of carbon in an iron–manganese alloy, Prog. Phys. Met., 19, No. 1: 70 (2018); https://doi.org/10.15407/ufm.19.01.070
  9. V.Yu. Danilchenko, A.V. Filatov, V.F. Mazanko, and V.E. Iakovlev, Effect of cyclic martensitic γ–ε transformations on diffusion characteristics of cobalt in an iron–manganese alloy, Prog. Phys. Met., 20, No. 3: 426 (2019); https://doi.org/10.15407/ufm.20.03.426
  10. P.A. Molian, Structure and hardness of laser-processed Fe–0.2%C–5%Cr and Fe–0.2%C–10%Cr alloys, J. Mater. Sci., 20, No. 8: 2903 (1985); https://doi.org/10.1007/BF00553054
  11. J. Tang, Mechanical and tribological properties of the TiC–TiB2 composite coating deposited on 40Cr-steel by electro spark deposition, Appl. Surf. Sci., 365: 202 (2016); https://doi.org/10.1016/j.apsusc.2015.12.198
  12. M.F. Hasanabadi, F.M. Ghaini, M. Ebrahimnia, and H.R. Shahverdi, Production of amorphous and nanocrystalline iron based coatings by electro-spark deposition process, Surf. Coat. Technol., 270: 95 (2015); https://doi.org/10.1016/j.surfcoat.2015.03.016
  13. V. Bondar, V. Danilchenko, and Ie. Dzevin, Gradient distribution of martensite phase in melt-spun ribbons of a Fe–Ni–Ti–Al Alloy, Nanoscale Res. Lett., 11: 96 (2016); https://doi.org/10.1186/s11671-016-1313-0
  14. А.А. Rusakov, Rentgenografija Metallov [X-ray Investigation of Metals] (Moscow: Аtomizdat: 1977) (in Russian).
  15. L.I. Мirkin, Spravochnik po Rentgenostrukturnomu Analizu [Handbook of X-ray Structural Analysis] (Moscow: Gosizdat Phys. Math. Lit.: 1961) (in Russian).
  16. A.Yu. Babkevich, V.I. Bondar, and V.E. Danilchenko, Z. Metallkd., 88: 489 (1997).
  17. V.Е. Danilchenko, V.I. Bondar, and A.M. Semyrga, Proc. Int. Conf. ‘Oborudovanie i Tehnologiya Termicheskoy Obrabotki Metallov i Splavov’ [Equipment and Technology of Heat Treatment of Metals and Alloys], (Kharkov: 2005), Pt. 2, p. 263 (in Russian).
  18. V.Yu. Danil’chenko and O.M. Semirga, Metallofiz. Noveishie Tekhnol., 28, Spec. Iss.: 361 (2006).
  19. А.D. Verhoturov, F.F. Egorov, and М.D. Smolin, Powder Metallurgy, No. 9: 28 (1982).
  20. G.V. Samsonov and I. М. Vinnickij, Tugoplavkie Soedineniya [Refractory compounds] (Moscow: Меtallurgiya: 1976) (in Russian).
  21. А.Е. Vоl, Stroenie i Svoistva Dvoinykh Metallicheskikh Sistem [Structure and Properties of Double Metal Systems] (Moscow: Gosizdat Phys. Math. Lit: 1959), Vol. 1 (in Russian).
  22. O.M. Semyrga, Zakonomirnosti Formuvannia Structurno-Fazovogo Stanu Pokryttiv ta Prypoverkhnevykh Shariv Splaviv na Osnovi Zaliza i Tytana pry Kombinovaniy Impulsniy Obrobtsi [Regularities of Formation of Structural-Phase State of Coatings and Near-Surface Layers of Iron and Titanium-Based Alloys in Combined Pulse Treatment] (Thesis of Disser. for Cand. Phys.-Math. Sci.) (Kyiv: G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine: 2004) (in Ukrainian).
  23. А.S. Bay, D.I. Leiper, and Е.N. Slesariova, Оkislenie Titana i Ego Splavov [Oxidation of Titanium and Its Alloys] (Moscow: Меtallurgizdat: 1970) (in Russian).
  24. J.F. Ready, Effects due to absorption of laser radiation, J. Appl. Phys, 36, No. 2: 462 (1965); https://doi.org/10.1063/1.1714012
  25. P.А. Leontiev, М.G. Han, and N.Т. Chekanova, Lazernaya Poverkhnostnaya Obrabotka Metallov i Splavov [Laser Surface Treatment of Metals and Alloys] (Moscow: Меtallurgiya: 1986) (in Russian).
  26. I.V. Kudriavcev, Materialy v Mashinostroenii. Spravochnik [Materials in Mashinbuilding. Handbook] T.5 (Moscow: Mashinostroenie: 1969) (in Russian).
  27. V.Yu. Danil’chenko and O.M. Semyrga, The phase composition of a hardmetal coating deposited by spark discharge on a carbon steel substrate, J. Superhard Mater., 30: 188 (2008); https://doi.org/10.3103/S1063457608030064
  28. V.Е. Danilchenko, V.I. Bondar, and A.M. Semyrga, Proc. Int. Conf. ‘Oborudovanie i Tehnologiya Termicheskoy Obrabotki Metallov i Splavov’ [Equipment and Technology of Heat Treatment of Metals and Alloys], (Kharkov: 2005), Pt. 3, p. 123 (in Russian).
  29. V.N. Еremenko, Mnogocomponentnye Splavy Titana [Multicomponent Titanium Alloys] (Kiev: Izdatelstvo AN USSR: 1962) (in Russian).
  30. I.I. Safronov, Issledovanie Vozmoznosti Primeneniya Karbidnykh i Boridnykh Soedineniy Titana, Niobiya, Zirkoniya i Khroma v Kachestve Electrodov dlia Electroiskrovogo Legirovaniya [Study of the Possibility of Using Carbide and Boride Compounds of Titanium, Niobium, Zirconium and Chromium as Electrodes for Electrospark Alloying] (Thesis of Disser. for Dr. Phys.-Math. Sci.) (Kiev: Institute for Problems of Materials Science, AN USSR: 1967) (in Russian).
  31. V.М. Schastlivtsev, D.А. Мirzaev, and I.P. Yakovleva, Structura Termicheski Obrabotannoy Stali [Heat Treated Steel Structure] (Moscow: Меtallurgiya: 1994) (in Russian).
  32. А.I. Gordienko and А.А. Shipko, Strukturnye i Fazovye Prevrascheniya v Titanovykh Splavah pri Bystrom Nagreve [Structure and Phase Transformations in Titanium Alloys at Fast Heating] (Minsk: 1983) (in Russian).
  33. А.Е. Gitlevich, G.I. Dimitrova, and Т.V. Pushnina, Electr. Proc. Mat., No. 2: 12 (1991).
  34. V.Е. Danilchenko, V.I. Bondar, Yu.V. Gubin, A.V. Paustovsky, and A.M. Semyrga, Physicochemical Mechanics of Materials, No. 5: 115 (2005).
  35. M.L. Bernshtejn and A.G. Rahshtadt, Metallovedenie i Termicheskaya Obrabotka Stali: Spravochnik [Metallurgy and Heat Treatment of Steel: Handbook], Vol. 1 (Moscow: Меtallurgiya: 1983) (in Russian).
  36. М.P. Shaskolskaja, Kristallografiya [Crystallography] (Moscow: Vysshaya Shkola: 1976) (in Russian).
  37. V.А. Аndryuschenko, Ye.M. Dzevin, V.F. Маzanko, and V.L. Svechnikov, Metallofiz. Noveishie Tekhnol., 21, No. 9: 71 (1999).
  38. D.S. Gertsriken, V.F. Маzanko, and V.М. Falchenko, Impulsnaya Obrabotka i Massoperenos v Metallakh pri Nizkikh Temperaturah [Pulse Processing and Mass Transfer in Metals at Low Temperatures] (Kiev: Naukova Dumka: 1991) (in Russian).
  39. V.І. Kiriliv, Physicochemical Mechanics of Materials, No. 6: 88 (1999).
  40. S.Z. Bokshtein, Diffuziya i Struktura Metallov [Diffusion and Structure of Materials] (Moscow: Меtallurgiya: 1973) (in Russian).
  41. J. Fridel, Dislokatsii [Dislocations] (Moscow: 1967) (in Russian).
  42. V.I. Bondar, V.Yu. Danyl’chenko, G.I. Prokopenko, and A.M. Semirga, Metallofiz. Noveishie Tekhnol., 25, No. 4: 485 (2003) (in Russian).
  43. V.Е. Danilchenko and V.I. Bondar, Proc. Int. Conf. ‘Oborudovanie i Tehnologiya Termicheskoy Obrabotki Metallov i Splavov’ [Equipment and Technology of Heat Treatment of Metals and Alloys], (Kharkov: 2005), Pt. 2, p. 205.
  44. V.E. Danilchenko and В.В. Polchuk, Materials Science Forum, 378: 440 (2001) (in Russian).
  45. A.V. Nedolya and D.Y. Shapar, Estimation of energy of cubic iron-carbon nanoclusters by molecular mechanic method, Materialwiss Werkst., 47, Nos. 2–3: 128 (2016); https://doi.org/10.1002/mawe.201600481
  46. A.V. Nedolya and N.V. Bondarenko, Change of energy of the cubic subnanocluster of iron under influence of interstitial and substitutional atoms, Nanoscale Res. Lett., 11: 15 (2016); https://doi.org/10.1186/s11671-016-1239-6
  47. V.А. Аndryuschenko and Ye.M. Dzevin, Metallofiz. Noveishie Tekhnol., 19, No. 3: 60 (1997) (in Russian).
  48. А.V. Paustovskiy and Yu.V. Gubin, Phys. Chem. Mech. Mater., No. 66: 31 (1997) (in Russian).
  49. V.Е. Danilchenko and B.B. Polchuk, Fiz. Met. Metalloved., 91, No. 5: 103, (2001) (in Russian).
  50. V.Е. Danilchenko and B.B. Polchuk, Reports of the National Academy of Sciences of Ukraine, No. 1: 137 (1998) (in Russian).
  51. M.S. Kovalchenko, A.V.Paustovsky, and V.P. Botvinko, Functional Materials, No. 1: 135 (2001) (in Russian).
  52. I. Schmidt and E. Hornbogen, The formation of metastable crystalline phases and glasses in splat-cooled Fe–C-Alloys, Z. Metallkunde, 69, No. 4: 221 (1978); https://doi.org/10.1515/ijmr-1978-690404
  53. Y.W. Kim, P.R. Strutt, and H. Nowotny, Laser melting and heat treatment of m2 tool steel: a microstructural characterization, Metall. Mater. Trans. A, 10: 881 (1979); https://doi.org/10.1007/BF02658307
  54. V.E. Danil’chenko, High-carbon martensite decomposition and formation of carbon-enriched regions, Scripta Met., 23, No. 11: 1823 (1989); https://doi.org/10.1016/0036-9748(89)90464-X
  55. L.S. Palatnik, Doklady Akademii Nauk SSSR, 89, No. 3: 455 (1953) (in Russian).
  56. V.I. Lakomskiy and G.F. Тоrkhov, Doklady Akademii Nauk SSSR, 183, No. 1: 87 (1968) (in Russian).
  57. А.А. Uglov and А.L. Galiev, Phys. Chem. Mater. Treat., No. 4: 10 (1981) (in Russian).
  58. А.L. Galiev, L.L. Krapivin, and L.I. Мirkin, Doklady Akademii Nauk SSSR, 251, No. 2: 336 (1980) (in Russian).
  59. M.А. Krishtal, А.А. Zhukov, and А.N. Kоkоrа, Struktura i Svoistva Splavov, Obrabotannykh Izlucheniem Lasera [Structure and Properties of Laser-Treated Alloys] (Moscow: Меtallurgiya: 1973) (in Russian).
  60. V.A. Tatarenko, T.M. Radchenko, and V.M. Nadutov, Parameters of interatomic interaction in a substitutional alloy f.c.c. Ni–Fe according to experimental data about the magnetic characteristics and equilibrium values of intensity of a diffuse scattering of radiations, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003) (in Ukrainian).
  61. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-empirical parameterization of interatomic interactions and kinetics of the atomic ordering in Ni–Fe–C permalloys and elinvars, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  62. T.M. Radchenko and V.A. Tatarenko, Atomic-ordering kinetics and diffusivities in Ni–Fe permalloy, Defect Diffus. Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.525
  63. V.A. Tatarenko and T.M. Radchenko, The application of radiation diffuse scattering to the calculation of phase diagrams of f.c.c. substitutional alloys, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  64. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Diffusivities and kinetics of short-range and long-range orderings in Ni–Fe permalloys, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  65. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  66. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  67. L. Cheng, A. Böttger, Th.H. de Keijser, and E.J. Mittemeijer, Lattice parameters of iron–carbon and iron–nitrogen martensites and austenites, Scr. Metal. Mater., 24, No. 3: 509 (1990); https://doi.org/10.1016/0956-716X(90)90192-J
  68. S.F. Yuriev, Technical Physics, 20, No. 5: 47 (1950) (in Russian).
  69. I.Z. Моgilevskiy, Strukturnye Izmeneniya v Zheleze i Stali Posle Elektroiskrovoy Obrabotki Ikh Poverkhnosti Grafitom. Problemy Elektricheskoy Obrabotki Materialov [Structural Changes in Iron and Steel After Electrospark Treatment of Their Surface with Graphite. Electrical Material Handling Challenges] (Moscow: Izdatelstvo АS USSR: 1984) (in Russian).
  70. V.Yu. Danilchenko and O.M. Semyrga, Regularities of formation of carbide electrospark coatings on a steel substrate, Superhard Materials, No. 3: 57 (2005) (in Ukrainian).
  71. А.М. Blokhin and I.G. Shveitser, Rentgenospektralnyy Spravochnik [X-Ray Spectral Handbook] (Moscow: Nauka: 1982) (in Russian).
  72. I.Е. Lеv, V.V. Podkidyshev, and B.G. Lazarev, Analiz Azotosoderzhashchikh Soedineniy v Splavakh Zheleza [Analysis of Nitrogen-Containing Compounds in Iron Alloys] (Moscow: Меtallurgiya: 1987) (in Russian).
  73. V.А. Аndryuschenko, Ye.M. Dzevin, and Т.V. Yefimova, Metallofiz. Noveishie Tekhnol., 20, No. 7: 49 (1998) (in Russian).
  74. V.A. Andryushchenko and E.N. Dzevin, Bulletin of the Czech and Slovak Crystallographic Association, 5, Spec. Iss.: 20 (1999).
  75. V.А. Аndryuschenko, O.V. Bavol, Т.L. Blinokhvatov, А.G. Garan, E.M. Dzevin, and G.S. Моgil’nyy, Metallofiz. Noveishie Tekhnol., 31, No. 9: 1257 (2009) (in Russian).