Electric-Spark Alloying of Metal Surfaces with Graphite

V. B. Tarelnyk$^1$, O. P. Gaponova$^2$, and Ye. V. Konoplianchenko$^1$

$^1$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^2$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received 27.09.2021; final version — 19.01.2022 Download PDF logo PDF

Abstract
The article reviews and analyses the current scientific research in the field of surface treatment of metal surfaces with concentrated energy fluxes (CEF) — the electric-spark (in the literature, known also as electrospark) alloying (ESA), which makes it possible to obtain surface structures with unique physical, mechanical and tribological properties at the nanoscale. The ESA method with a graphite electrode (electrospark carburizing — EC) is based on the process of diffusion (saturation of the surface layer of a part with carbon), and it is not accompanied by an increase in the size of the part. In this article, the influence of the EC parameters on the quality of the carburized layer is investigated. The microstructural analysis shows that the three characteristic zones could be distinguished in the structure: the carburized (‘white’) layer, the finely dispersed transition zone with fine grain, and the base metal zone. The analysis of the results of the durometric studies of the coatings is carried out. To achieve the required parameters of dimensional accuracy and roughness of the working surface of the part after the EC process, it is necessary to use the method of non-abrasive ultrasonic finishing (NAUF). In addition, because of applying the NAUF method, the surface roughness is decreased, the tensile stresses are changed to the compressive ones, and the fatigue strength is increased too. In addition, to reduce the roughness of the treated surface, it is proposed to apply the EC technology in stages, reducing the energy of the spark discharge at each subsequent stage. In order to increase the quality of the carburized layer obtained by the EC process, it is proposed to use a graphite powder, which is applied to the treated surface before alloying. The comparative analysis shows that, after the traditional EC process at Wp = 4.6 J, the surface roughness of steel 20 is Ra = 8.3–9.0 μm, and after the proposed technology, Ra = 3.2–4.8 μm. In this case, the continuity of the alloyed layer increases up to 100%; there increases the depth of the diffusion zone of carbon up to 80 μm as well as the microhardness of the ‘white’ layer and its thickness, which increase up to 9932 MPa and up to 230 μm, respectively. The local micro-x-ray spectral analysis of the obtained coatings shows that, at the EC process carried out in a traditional way, the applying Wp = 0.9, 2.6, 4.6 J provides the formation of the surface layers with high-carbon content depths of 70, 100, 120 μm, respectively, and with the use of a graphite powder, they are of 80, 120, 170 μm. While deepening, the amount of carbon is decreasing from 0.72–0.86% to the carbon content in the base metal — 0.17–0.24%. In the near-surface layer formed with the use of the new technology, the pores are filled with free graphite, which could be used as a solid lubricant to improve the operating characteristics of the friction-pairs parts processed thereby.

Keywords: electrospark (electric-spark) alloying, graphite, carburizing, microstructure, quality, wear resistance.

DOI: https://doi.org/10.15407/ufm.23.01.027

Citation: V. B. Tarelnyk, O. P. Gaponova, and Ye. V. Konoplianchenko, Electric-Spark Alloying of Metal Surfaces with Graphite, Progress in Physics of Metals, 23, No. 1: 27–58 (2022)


References  
  1. I.P. Shatskyi, V.V. Perepichka, and L.Ya. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.01.0069
  2. A. Umanskii, M. Storozhenko, I. Hussainova, A. Terentiev, A. Kovalchenko, and M. Antonov. Powder Metall. Met. Ceram., 53, Nos. 11–12: 663 (2015); https://doi.org/10.1007/s11106-015-9661-3
  3. O. Umanskyi, M. Storozhenko, M. Antonov, O. Terentyev, О. Koval, and D. Goljandin, Key Engineering Materials, 799: 37 (2019); https://doi.org/10.4028/www.scientific.net/KEM.799.37
  4. M.S. Storozhenko, A.P. Umanskii, A.E. Terentiev, and I.M. Zakiev, Powder Metall. Met. Ceram. 56, Nos. 1–2: 60 (2017); https://doi.org/10.1007/s11106-017-9872-x
  5. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O.Terentiev, Yu. Gubin, O Kostenko, and I. Martsenyuk, Powder Metall. Met. Ceram. 59, Nos. 7–8: 434 (2020); https://doi.org/10.1007/s11106-020-00177-y
  6. F.A.P. Fernandes, S.C. Heck, R.G. Pereira, A. Lombardi-Neto, G.E. Totten, and L.C. Casteletti, Journal of Achievements in Materials and Manufacturing Engineering, 40, No. 2: 175 (2010).
  7. S. Yeh, L. Chiu, and H. Chang, Engineering, 9, No. 3: 942 (2011); https://doi.org/10.4236/eng.2011.39116
  8. S. Slima, Materials Sciences and Applications, 9, No. 3: 640 (2012); https://doi.org/10.4236/msa.2012.39093
  9. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, No. 5 (79): 53 (2016) (in Ukrainian); https://doi.org/10.15587/1729-4061.2016.59850
  10. L.Ya. Ropyak, T.O. Pryhorovska, and K.H. Levchuk, Prog. Phys. Met., 21, No. 2: 274 (2020); https://doi.org/10.15407/ufm.21.02.274
  11. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 41, No. 5: 647 (2019) (in Ukrainian); https://doi.org/10.15407/mfint.41.05.0647
  12. V.I. Kuz’min, A.A. Mikhal’chenko, O.B. Kovalev, E.V. Kartaev, and N.A. Rudenskaya, Journal of Thermal Spray Technology, 21, No. 1: 159 (2012); https://doi.org/10.1007/s11666-011-9701-6
  13. A.D. Pogrebnjak, V.I. Ivashchenko, P.L Skrynskyy, O.V. Bondar, P. Konarski, K. Zaleski, S. Jurga, and E. Coy, Composites Part B: Engineering, 142: 85 (2018); https://doi.org/10.1016/j.compositesb.2018.01.004
  14. O. Maksakova, S. Simoẽs, A. Pogrebnjak, O. Bondar, Y. Kravchenko, V. Beresnev, and N. Erdybaeva, Materials Characterization, 140: 189 (2018); https://doi.org/10.1016/j.matchar.2018.03.048
  15. A.D. Pogrebnjak, V.M. Beresnev, K.V. Smyrnova, Ya.O. Kravchenko, P.V. Zukowski, and G.G. Bondarenko, Mater. Lett., 211: 316 (2018); https://doi.org/10.1016/j.matlet.2017.09.121
  16. G. Morand, P. Chevallier, L. Bonilla-Gameros, Stéphane Turgeon,Maxime Cloutier, M. Da Silva Pires, A. Sarkissian, M. Tatoulian, L. Houssiau, and D. Mantovani, Surface and Interface Analysis, 53, No. 7: 658 (2021); https://doi.org/10.1002/sia.6953
  17. G. Maistro, S. Kante, L. Nyborg, and Y. Cao, Surfaces and Interfaces, 24: 101093 (2021); https://doi.org/10.1016/j.surfin.2021.101093
  18. V.G. Smelov, A.V.Sotov, and S.A. Kosirev, ARPN Journal of Engineering and Applied Sciences, 9, No. 10: 1854 (2014) (in Russian);. https://doi.org/10.18287/2412-7329-2015-14-3-2-425-431
  19. B. Antoszewski and V. Tarelnyk, Appl. Mech. Mater., 630: 301 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.301
  20. B. Antoszewski, S. Tofil, M. Scendo, and W. Tarelnik, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012036 (2017); https://doi.org/10.1088/1757-899X/233/1/012036
  21. I. Pliszka and N. Radek, Procedia Engineering, 192: 707 (2017); https://doi.org/10.1016/j.proeng.2017.06.122
  22. Y.K. Mashkov, D.N. Korotaev, M.Y. Baibaratskaya, and B.Sh. Alimbaeva, Tech. Phys., 60, No. 10: 1489 (2015); https://doi.org/10.1134/S1063784215100217
  23. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Yu.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, and B.A. Sarzhanov, Surf. Engin. Appl. Electrochem., 57, No. 3: 173 (2021); https://doi.org/10.3103/S1068375521020113
  24. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, E.V. Konoplyanchenko, and K. Antoshevskii, Surf. Engin. Appl. Electrochem., 53, No. 3: 285 (2017); https://doi.org/10.3103/S1068375517030140
  25. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, and M.Ya. Dovzhyk, Metallofiz. Noveishie Tekhnol., 39, No. 3: 363 (2017) (in Russian); https://doi.org/10.15407/mfint.39.03.0363
  26. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, V.A. Herasymenko, and N.S. Evtushenko, Metallofiz. Noveishie Tekhnol., 40, No. 2: 235 (2018) (in Russian); https://doi.org/10.15407/mfint.40.02.0235
  27. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplyanchenko, N.S. Yevtushenko, and V.O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian); https://doi.org/10.15407/mfint.40.06.0795
  28. V.B. Tarelnyk, A.V. Paustovskii, Y.G. Tkachenko, E.V. Konoplianchenko, V.S. Martsynkovskyi, and B. Antoszewski, Powder Metall. Met. Ceram., 55: Nos. 9–10: 585 (2017); https://doi.org/10.1007/s11106-017-9843-2
  29. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, Ie. Konoplianchenko, M. Dovzyk, N. Tarelnyk, and S. Gorovoy, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012049 (2017); https://doi.org/10.1088/1757-899X/233/1/012049
  30. D.N. Korotaev, Tekhnologicheskie Vozmozhnosti Formirovaniya Iznosostoikikh Nanostructur Ehlektroiskrovym Legirovaniem [Technological Possibilities of Wear-Resistant Nanostructure Formation by Electric-Spark Alloying], (Omsk: SibADI: 2009) (in Russian).
  31. A.D. Verkhoturov, Formirovanie Poverkhnostnogo Sloya Metallov pri Ehlektroiskrovom Legirovanii [Formation of the Metal Surface Layer by Electric-Spark Alloying], (Vladivostok: Dal’nauka: 1995) (in Russian).
  32. A.I. Mikhailyuk and A.E. Gitlevich, Surf. Engin. Appl. Electrochem., 46, No. 5: 424 (2010); https://doi.org/10.3103/S1068375510050054
  33. Yusuf Kayali and Şükrü Talaş, Prot. Met. Phys. Chem. Surf., 57, No. 1: 106 (2021); https://doi.org/10.1134/S2070205120060131
  34. Y.G. Tkachenko, O.I. Tolochyn, V.F. Britun, and D.Z. Yurchenko, Powder Metall. Met. Ceram., 58, Nos. 11–12: 692 (2020); https://doi.org/10.1007/s11106-020-00126-9
  35. N. Radek, J. Pietraszek, and A. Szczotok, Int. Conf. on Metallurgy and Materials, METAL 2017 (May 24–26, 2017, Brno) (Ostrava: 2018), p. 1432.
  36. A.E. Gitlevich, V.V. Mikhailov, N.Ya. Parkanskii, and V.M. Revutskii, Ehlektroiskrovoe Legirovanie Metallicheskikh Poverkhnostei [Electrospark Alloying of Metal Surfaces] (Chisinau: Shtiintsa: 1985) (in Russian).
  37. V.S. Martsynkovskyy, V.B. Tarelnyk, and А.В. Belous, Sposib Tsementatsii Stalevykh Detalei Ehlektroeroziinym Leguvanniam [Method of Cementation of Steel Parts by Electroerosion Alloying], Patent 82948 UA. MKI (2006), C23C 8/00 (Publ. Bul. No. 10: 3) (2008) (in Ukrainian).
  38. V.S. Martsynkovskyy, V. B. Tarelnyk, and М.P. Bratushchak, Sposib Tsementatsii Stalevykh Detalei Ehlektroeroziinym Leguvanniam [Method of Cementation of Steel Parts by Electroerosion Alloying], Patent 101715 UA. MKI (2013.01), B23H 9/00, (Publ. Bul. No. 8: 7) (2013) (in Ukrainian).
  39. V.B. Tarelnyk, V.S. Martsynkovskyy, O.P. Gaponova, O.M. Myslyvchenko, V.O. Pirogov, O.O. Gapon, and A.D. Lazarenko, Sposib Tsementatsii Stalevykh Detalei Ehlektroeroziinym Leguvanniam [Method of Cementation of Steel Parts by Electroerosion Alloying], Patent 142822 UA. MKI (2020.01), C23C 8/00, C23C 28/00, (Publ. Bul. No. 12: 8) (2020) (in Ukrainian).
  40. V.B. Tarelnyk, V.S. Martsynkovskyy, O.A. Sarzhanov, O.O. Gapon, B.O. Sarzhanov, O.P. Gaponova, and E.V. Konoplyanchenko, Sposib Ehkologichno Bezpechnogo Zmitsnennia Detalei z Lystovoi Stali Metodom Ehlektroeroziinogo Leguvannia Stalevykh Poverkhon Grafitovym Ehlektrodom [A Method of Environmentally Friendly Hardening of Sheet Steel Parts by Electroerosion Alloying of Steel Surfaces with a Graphite Electrode], Patent 141992 UA. MKI (2020.01) B23P 6/00, B23K 9/04 (2006.01), B23H 5/00, B23H 5/02 (2006.01), (Publ. Bul. No. 9: 9) (2020) (in Ukrainian).
  41. V.B. Tarel’nik, A.V. Paustovskii, Yu.G. Tkachenko, V.S. Martsinkovskii, A.V. Belous, E.V. Konoplyanchenko, and O.P. Gaponova, Surf. Engin. Appl. Electrochem., 54, No. 2: 147 (2018); https://doi.org/10.3103/S106837551802014X
  42. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019); https://doi.org/10.15407/mfint.41.01.0047
  43. V.B. Tarel’nik, E.V. Konoplyanchenko, P.V. Kosenko, and V.S. Martsinkovskii, Chem. Petrol. Eng., 53, Nos. 7–8: 540 (2017); https://doi.org/10.1007/s10556-017-0378-7
  44. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chem. Petrol. Eng. 53, Nos. 3–4: 266 (2017); https://doi.org/10.1007/s10556-017-0333-7
  45. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chem. Petrol. Eng. 53, Nos. 5–6: 385 (2017); https://doi.org/10.1007/s10556-017-0351-5
  46. A.I. Mikhaylyuk, Ehlektronnaya Obrabotka Materialov [Electronic Processing of Materials], 39, No. 3: 21 (2003) (in Russian).
  47. V. Tarelnyk, V. Martsynkovskyy, and A. Dziuba, Appl. Mech. Mater., 630: 388 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.388
  48. V.B. Tarelnyk and V.S. Martsynkovskyy, Sposib Obrobky Spoluchnykh Poverkhon Detalei (Varianty) [A method of Processing Connecting Surfaces of Details (Options)], Patent 66105 UA. MKI (2006), B23H 1/00, B23H 5/00, B23H 9/00, (Publ. Bul. No. 7: 3) (2008) (in Ukrainian).
  49. V.B. Tarel’nik, V.S. Martsinkovskii, and V.I. Yurko, Chem. Petrol. Eng., 51, Nos. 5–6: 328 (2015); https://doi.org/10.1007/s10556-015-0047-7
  50. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Eng., 39: 157 (2012); https://doi.org/10.1016/j.proeng.2012.07.020
  51. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chem. Petrol. Eng. 53, Nos. 1–2: 114 (2017); https://doi.org/10.1007/s10556-017-0305-y
  52. V.B. Tarel’nik and A.V. Bilous, Bulletin of Sumy National Agrarian University, 11: 115 (2005) (in Russian).
  53. A.V. Bilous, Bulletin of Sumy National Agrarian University, 12: 158 (2006) (in Russian).
  54. V.B. Tarelnik, B. Antoshevsky, V.S. Martsinkovsky, E.V. Konoplyanchenko, and A.V. Belous Tsementatsiya Ehlektroehrozionnym Legirovaniem: Monografiya [Cementation by Electroerosive Alloying: A Monograph] (Ed. V.B. Tarelnik) (Sumy: University Book: 2015) (in Russian).
  55. A.I. Mikhaylyuk, A.Ye. Gitlevich, A.I. Ivanov, Ye.I. Fomicheva, G.I. Dimitrova, and A.N. Gripachevskiy, Electronic Processing of Materials, 4: 23 (1986) (in Russian).
  56. V.M. Ershov, Collection of Scientific Works of the Donbass State Technical University Staff, 31: 219 (2011) (in Russian).
  57. A.I. Mikhailyuk, V.G. Revenko, and N.N. Natarov, Physics and Chemistry of Materials Processing, 1: 101 (1993) (in Russian).
  58. V.B. Tarelnik and A.V. Belous, Compressor and Power Engineering, 11, No. 1: 90 (2008) (in Russian).
  59. A.I. Mikhailyuk, L.S. Rapoport, and A.E. Gitlevich, Electronic Processing of Materials, 1: 16 (1991) (in Russian).
  60. A.I. Mikhailyuk, L.S. Rapoport, and A.E. Gitlevich, Electronic Processing of Materials, 2: 17 (1991) (in Russian).
  61. V.K. Yatsenko, G.Z. Zaitsev, and V.F. Pritchenko, Povyshenie Nesushchey Sposobnosti Detaley Mashin Almaznym Vyglazhivaniem [Increasing the Bearing Capacity of Machine Parts by Diamond Burnishing] (Moscow: Mashinostroenie: 1985) (in Russian).
  62. V.K. Yatsenko, V.F. Pritchenko, I.N. Komarchuk, and A.G. Sakhno, Problems of Strength, 5: 119 (1987) (in Russian).
  63. Yu.V. Kholopov, A.G. Zinchenko, and A.A. Savinykh, Bezabrazivnaya Ultrazvukovaya Finishnaya Obrabotka Metallov [Abrasive Ultrasonic Finishing of Metals] (Leningrad: LDNTP: 1988) (in Russian).
  64. V.B. Tarelnik, V.S. Martsinkovskiy, and B. Antoshevskiy, Povyshenie Kachestva Podshipnikov Skolzheniya: Monografiya [Improving the Quality of Sliding Bearings: A Monograph] (Sumy: McDen Publishing House: 2006) (in Russian).
  65. V.B. Tarelnik, Kombinirovannye Tekhnologii Ehlektroerozionnogo Legirovaniya [Combined Technologies of Electroerosive Alloying] (Kyiv: Tekhnika: 1997) (in Russian).
  66. D.N. Garkunov, Tribotekhnika [Tribotechnics] (Moscow: Mashinostroenie: 1989) (in Russian).
  67. N.I. Lazarenko, Ehlektroiskrovoe Legirovanie Metallicheskikh Poverkhnostey [Electrospark Alloying of Metal Surfaces] (Moscow: Mashinostroenie: 1976) (in Russian).
  68. V.B. Tarelnik, V.S. Martsinkovskiy, and B. Antoshevskiy, Suchasni Metody Formoutvorennya Poverkhon Tertya Detaley Mashyn: Monohrafiya [Modern Methods of Forming the Friction Surfaces of Machine Parts: A Monograph]. (Sumy: McDen Publishing House: 2012) (in Ukrainian).
  69. O.V. Sizova and E.A. Kolubaev, Izvestiya Vuzov. Fizika, 2: 27 (2003) (in Russian).
  70. V.B. Tarelnyk, O.P. Gaponova, G.V. Kirik, Ye.V. Konoplianchenko, N.V. Tarelnyk, and M.O. Mikulina, Metallofiz. Noveishie Tekhnol., 42, No. 5: 655 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.05.0655
  71. V. Tarelnyk, O. Gaponova, V. Martsynkovskyy, Ie. Konoplianchenko, V. Melnyk, V. Vlasovets, A. Sarzhanov, N. Tarelnyk, Du Xin, Yu. Semirnenko, S. Semirnenko, T. Voloshko, and O. Semernya, 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP) (November 9–13, 2020, Sumy) (IEEE Xplore: 2021), p. 01TFC13; https://doi.org/10.1109/NAP51477.2020.9309618
  72. A.D. Verkhoturov and I.M. Mukha, Tekhnologiya Ehlektroiskrovogo Legirovaniya Metallicheskikh Poverkhnostey [Technology of Electrospark Alloying of Metal Surfaces] (Kyiv: Tekhnika: 1982) (in Russian).