Modelling of Phase Formation in Solid–Solid and Solid–Liquid Interactions: New Developments

A. M. Gusak and N. V. Storozhuk

The Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Received 19.08.2021; final version — 02.11.2021 Download PDF logo PDF

Abstract
Recent developments (after 2016) in modelling of phase formation during solid–solid and solid–liquid reactions by SKMF (Stochastic Kinetic Mean-Field) method, Monte Carlo simulation and phenomenological modelling are reviewed. Reasonable results of multiphase reactive diffusion modelling demonstrating distinct concentration plateau for each intermediate ordered compound and distinct concentration steps between these phases are obtained by the SKMF and Monte Carlo methods, if one takes into account interatomic interactions within two coordination shells and if the signs of mixing energies are ‘minus’ for the first coordination shell and ‘plus’ for the second one. Second possibility for reasonable modelling results is consideration of interatomic interactions depending on local concentration with maxima around stoichiometric composition. In phenomenological modelling, the generalization of Wagner diffusivity concept and respective superposition rule are introduced. New mechanism of the lateral grain growth in the growing phase layers during reactive diffusion is suggested. Anomalously fast grain growth at the final stages of soldering in sandwich-like Cu–Sn–Cu contacts is reported and explained. Simple model of Zn-additions’ influence on the Cu–Sn reaction is described.

Keywords: interdiffusion, intermediate phases, ordering, modelling, mean-field approximation, noise, Monte Carlo method, soldering.

DOI: https://doi.org/10.15407/ufm.22.04.481

Citation: A. M. Gusak and N. V. Storozhuk, Modelling of Phase Formation in Solid–Solid and Solid–Liquid Interactions: New Developments, Progress in Physics of Metals, 22, No. 4: 481–510 (2021)


References  
  1. K.-N. Tu, Solder Joint Technology (New York: Springer: 2007), p. 357; ISBN: 0-387-38890-7
  2. F. Baras, V. Turlo, O. Politano, S.G. Vadchenko, A.S. Rogachev, A.S. Mukasyan, Advanced Engineering Materials, 20, No. 8: 1800091 (2018); https://doi.org/10.1002/adem.201800091
  3. S.Q. Arlington, S.V. Lakshman, S.C., Barron, J.B. DeLisio, J.C. Rodriguez, S. Narayanan, T.P. Weihs, Materials Advances, 1, No. 5: 1151 (2020); https://doi.org/10.1039/D0MA00148A
  4. El.M. Kousseifi, K. Hoummada, F. Panciera, C. Lavoie, D. Mangelinck, Acta Materialia, 198: 100 (2020); https://doi.org/10.1016/j.actamat.2020.07.062
  5. K.-N. Tu, A. M. Gusak, Kinetics in nanoscale materials (New York: John Wiley & Sons: 2014); ISBN: 978-0-470-88140-8
  6. R. Chaim, Y. Amouyal, Materials, 12, No. 9: 1494 (2019); https://doi.org/10.3390/ma12091494
  7. A. Gusak, N. Storozhuk, Diffusion-Controlled Phase Transformations in Open Systems. In Handbook of Solid State Diffusion (Amsterdam, Netherlands: Elsevier: 2017), Vol. 2: pp. 37-100; https://doi.org/10.1016/B978-0-12-804548-0.00002-5
  8. A.M. Gusak, T.V. Zaporozhets, Y.O. Lyashenko, S.V. Kornienko, M.O. Pasichnyy, A.S. Shirinyan, Diffusion-controlled solid state reactions: in alloys, thin films and nanosystems (New York: John Wiley & Sons: 2010); ISBN: 978-3-527-40884-9
  9. A.M. Gusak, O.Y. Lyashenko, F. Hodaj, Inorganic Materials: Applied Research, 10, No. 3: 517 (2019); https://doi.org/10.1134/S2075113319030109
  10. A.M. Gusak, Ukrainian Journal of Physics, 35, No. 5: 725 (1990)
  11. F. Hodaj, A.M. Gusak, P.J. Desre, Philosophical Magazine A, 77, No 6: 1471 (1998); https://doi.org/10.1080/01418619808214264
  12. A.M. Gusak, F. Hodaj, A.O. Bogatyrev, Journal of physics: Condensed matter, 13, No. 12: 2767 (2001); https://doi.org/10.1088/0953-8984/13/12/302
  13. F. Hodaj, A.M. Gusak, Acta materialia, 52, No. 14: 4305 (2004); https://doi.org/10.1016/j.actamat.2004.05.047
  14. A.M. Gusak, F. Hodaj, G. Schmitz, Philosophical Magazine Letters, 91, No. 9: 610 (2011); https://doi.org/10.1080/09500839.2011.600257
  15. A.M. Gusak, A.O. Bogatyrev, A.O. Kovalchuk, S.V. Kornienko, Gr.V. Lucenko, Yu.A. Lyashenko, A.S. Shirinyan, T.V. Zaporoghets, Progress in Physics of Metals, 5, No. 4: 433 (2004); https://doi.org/10.15407/ufm.05.04.433
  16. G. Martin, Physical review B, 41, No. 4: 2279 (1990); https://doi.org/10.1103/PhysRevB.41.2279
  17. Z. Erdelyi, D.L. Beke, A. Taranovskyy, Applied Physics Letters, 92, No. 13: 133110 (2008); https://doi.org/10.1063/1.2905334
  18. N.V. Storozhuk, K.V. Sopiga, A.M. Gusak, Philosophical Magazine, 93, No. 16: 1999 (2013); https://doi.org/10.1080/14786435.2012.746793
  19. Z. Erdelyi, M. Pasichnyy, V. Bezpalchuk, J.J. Toman, B. Gajdics, A.M. Gusak, Computer Physics Communications, 204: 31 (2016); https://doi.org/10.1016/j.cpc.2016.03.003
  20. V.M. Bezpalchuk, R. Kozubski, A.M. Gusak, Progress in Physics of Metals, 18, No. 3.: 205 (2017); https://doi.org/10.15407/ufm.18.03.205
  21. A. Gusak, T. Zaporozhets, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1415 (2018); https://doi.org/10.15407/mfint.40.11.1415
  22. A. Gusak, T. Zaporozhets, N. Storozhuk, The Journal of Chemical Physics, 150, No. 17: 174109 (2019); https://doi.org/10.1063/1.5086046
  23. T.V. Zaporozhets, A. Taranovskyy, G. Jager, A.M., Gusak, Z. Erdelyi, J.J. Toman, Computational Materials Science, 171: 109251(2020); https://doi.org/10.1016/j.commatsci.2019.109251
  24. A. G. Khachaturyan, Theory of Structural Transformations In Solids (New York: Dover Publications: 2013); ISBN: 0-486-46280-3
  25. Y. Wang, L. Chen, A. Khachaturyan, Solid-solid phase transformation (Warrendale, PA: TMS: 1994), p. 245; ISBN: 0-87339-278-7
  26. A. Portavoce, G. Treglia, Physical Review B, 82, No. 20: 205431 (2010); https://doi.org/10.1103/PhysRevB.82.205431
  27. A. Portavoce, G. Treglia, Physical Review B, 85, No. 22: 224101 (2012); https://doi.org/10.1103/PhysRevB.85.224101
  28. C. Wagner, Acta Metallurgica, 17, No. 2: 99 (1969); https://doi.org/10.1016/0001-6160(69)90131-X
  29. A.M. Gusak, N.V. Storozhuk, Metallofiz. Noveishie Tekhnol., 41, No. 5: 583 (2019); https://doi.org/10.15407/mfint.41.05.0583
  30. A.M. Gusak, M.V. Yarmolenko, Journal of applied physics, 73, No. 10, 4881 (1993); https://doi.org/10.1063/1.353805
  31. V.M. Pasichna, A.M. Gusak, Cherkasy university bulletin: physical and mathematical sciences, 1: 9 (2019); https://doi.org/10.31651/2076-5851-2019-1-9-30
  32. V. Pasichna, A. Gusak, Computational Materials Science, 187: 110114 (2021); https://doi.org/10.1016/j.commatsci.2020.110114
  33. A. M. Gusak, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1335 (2020); https://doi.org/10.15407/mfint.42.10.1335
  34. A.M., Gusak, K.-N. Tu, Physical Review B, 66, No. 11: 115403 (2002); https://doi.org/10.1103/PhysRevB.66.115403
  35. K.-N. Tu, A.M. Gusak, M. Li, Journal of applied Physics, 93, No. 3: 1335 (2003); https://doi.org/10.1063/1.1517165
  36. J.O. Suh, K.-N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Materialia, 56, No. 5: 1075 (2008); https://doi.org/10.1016/j.actamat.2007.11.009
  37. B.R., Patterson, Y. Liu, Metallurgical Transactions A, 23, No. 9: 2481 (1992); https://doi.org/10.1007/BF02658051
  38. O. Liashenko, A.M. Gusak, F. Hodaj, Journal of Materials Science: Materials in Electronics, 25, No. 10: 4664 (2014); https://doi.org/10.1007/s10854-014-2221-7
  39. F. Hodaj, O. Liashenko, A.M. Gusak, Philosophical Magazine Letters, 94, No. 4: 217 (2014): https://doi.org/10.1080/09500839.2014.886782
  40. A. Gusak, F. Hodaj, O. Liashenko, Philosophical Magazine Letters, 95, No. 2: 110 (2015); https://doi.org/10.1080/09500839.2015.1020350
  41. A.M. Gusak, C. Chen, K.-N. Tu, Philosophical Magazine, 96, No. 13: 1318 (2016); https://doi.org/10.1080/14786435.2016.1162913
  42. A.M. Gusak, K.-N. Tu, C. Chen, Scripta materialia, 179: 45 (2020); https://doi.org/10.1016/j.scriptamat.2020.01.005
  43. Y. Liu, L. Pu, A. Gusak, X. Zhao, C. Tan, K.-N. Tu, Materialia, 12: 100791 (2020); https://doi.org/10.1016/j.mtla.2020.100791