Overstressed Nanosecond Discharge in the Gases at Atmospheric Pressure and Its Application for the Synthesis of Nanostructures Based on Transition Metals

O. K. Shuaibov and A. O. Malinina

State Institution of Higher Education ‘Uzhhorod National University’, 3 Narodna Sq., UA-88000 Uzhhorod, Ukraine

Received 14.02.2021; final version — 01.07.2021 Download PDF logo PDF

Abstract
The review article presents the characteristics and parameters of an overstressed nanosecond discharge (OND) in air and argon at atmospheric pressure between electrodes made of zinc, copper, and aluminium. The technique, methods and experimental conditions for studying the characteristics and parameters of the OND and its application for the synthesis of thin nanostructured films of transition-metal oxides synthesized under intense ultraviolet (UV) irradiation of the substrate with film are presented. The microexplosions of inhomogeneities on the surface of electrodes in a strong electric field act as a source of metal vapour in plasma. The spatial, electrical, and optical characteristics of the OND in air and argon between transition-metal electrodes, which was ignited in the needle-to-needle electrode system, are reported. The results of experimental measurements of the parameters of the discharge plasma based on the Cu–air gas–vapour mixtures are presented. The optical characteristics of thin nanostructured transition-metal oxide films synthesized under conditions of automatic UV irradiation of the substrate by the discharge plasma are considered.

Keywords: overstressed nanosecond discharge, zinc, copper, and aluminium electrodes, thin nanostructured films.

DOI: https://doi.org/10.15407/ufm.22.03.382

Citation: O. K. Shuaibov and A. O. Malinina, Overstressed Nanosecond Discharge in the Gases at Atmospheric Pressure and Its Application for the Synthesis of Nanostructures Based on Transition Metals, Progress in Physics of Metals, 22, No. 3: 382–439 (2021)


References  
  1. J.P. Walters and H.V. Malmstadt, Analytical Chemistry, 37, No. 12: 1484 (1965); https://doi.org/10.1021/ac60231a010
  2. L.F. Strelkov and A.A. Yankovski, Journal of Applied Spectroscopy, 19, No. 4: 605 (1973); https://doi.org/10.1007/BF00604063
  3. L.P. Babich, T.V. Loiko, and V.A. Zuckerman, Physics-Uspekhi, 160, No. 7: 49 (1990); https://doi.org/10.3367/UFNr.0160.199007b.0049.
  4. V.V. Akhmadeev, L.M. Vasilyak, S.V. Kostyuchenko, N.N. Kudryavtsev, and G.A. Kurkin, Journal of Technical Physics, 66, No. 4: 58 (1996).
  5. A.K. Shuaibov, G.E. Laslov, and Ya.Ya. Kozak, Optics and Spectroscopy 116, No. 4: 552 (2014); https://doi.org/10.1134/S0030400X14030199
  6. A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, V.V. Danilo, M.Yu. Sichka, and I.V. Shevera, American Journal of Mechanical and Materials Engineering, 2, 1: 8 (2018); https://doi.org/10.11648/j.ajmme.20180201.12
  7. A.K. Shuaibov, A.I. Minya, Z.T. Gomoki, and V.V. Danilo, and P.V. Pinzenik, Surface Engineering and Applied Electrochemistry, 55, No. 1: 65 (2019); https://doi.org/10.3103/S1068375519010137
  8. G.A. Mesyats, Physics-Uspekhi, 38, 6: 567 (1995); https://doi.org/10.1070/PU1995v038n06ABEH000089
  9. A.R. Striganov and N. Sventitsky, Tables of Spectral Lines of Neutral and Ionized Atoms (Moscow: Atomizdat: 1966) (in Russian).
  10. NIST Atomic Spectra Database Lines Form; https://physics.nist.gov/PhysRefData/ASD/lines_form.html
  11. O.K. Shuaibov, O.I. Minya, Z.T. Gomoki, and V.V. Daniil, Method for Nanostructuring a Glass Surface in Atmospheric Pressure Air: Patent UA 05112 (Publ. Bull. No. 21, 2017) (in Ukrainian).
  12. O.H. Abduev, A. Sh. Asvarov, N.M. Alikhanov, V.V. Belyaev, and F.I. Vysikaylo, Physical Electronics: Proc. IX All-Russian Conf. (2016, Makhachkala) (ITC DTU: 2016), p. 265.
  13. A.Kh. Abduev, A.Sh. Asvarov, A.K. Akhmedov, R.M. Emirov, and V.V. Belyaev, Technical Physics Letters, 43, No. 22: 40 (2017); https://doi.org/10.21883/PJTF.2017.22.45259.16874
  14. A. Shuaibov, A. Minya, A. Malinina, A. Malinin, R. Golomd, I. Shevera, Z. Gomoki, and V. Danilo, Advances in Natural Sciences: Nanoscience and Nanotechnology, 9: 035018 (2018); https://doi.org/10.1088/2043-6254/aadc4b
  15. E.M. Egorova, Biological Effects of Metal Nanoparticles (Moscow: Nauka: 2014) (in Russian).
  16. V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, and M.I. Lomaev, Plasma Physics Reports, 43: 792 (2017); https://doi.org/10.1134/S1063780X17070121
  17. D.Z. Pai, D.A. Lacoste, and Ch.O. Laux, Plasma Sources Science and Technology, 19: 065015 (2010); https://doi.org/10.1088/0963-0252/19/6/065015
  18. K.A. Prilepa, A.V. Samusenko, and Yu.K. Stishkov, High Temperature, 54: 655 (2016); https://doi.org/10.1134/S0018151X16040192
  19. O.K. Shuaibov, V.V. Danilo, O.Y. Minya, A.O. Malinina, and S.Yu. Naymet, Scientific Herald of Uzhhorod University. Series ‘Physics’, No. 44: 154 (2018) (in Ukrainian); https://doi.org/10.24144/2415-8038.2018.44.154-164
  20. O.K Shuaibov, O.Y. Minja, M.P.Chuchman, Z.T. Homoki, and V.V. Danylo, NSC ‘Kharkiv Institute of Physics and Technology’ and Bogolyubov Institute for Theoretical Physics Scientific Council ‘Plasma Physics and Plasma Electronics’ 2017 Annual Report (Kyiv: 2018), p. 54 (in Ukrainian).
  21. A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, V.V. Danilo, and R.B. Pynzenik, Electronic Material Processing, 54, No. 1: 46 (2018) (in Russian); https://doi.org/10.5281/zenodo.1168351
  22. O.K. Shuaibov, O.Y. Minya, Z.T. Gomoki, V.V. Danilo, Windowless, Spot, Ultraviolet Lamp on Copper Vapors: Patent UA 10.04.2018 (Publ. Bull. No. 7, 2018) (in Ukrainian).
  23. O.Y. Minya, O.K. Shuaibov, Z.T. Gomoki, V.V. Danilo, M.M. Chavarga, and L.E. Kukri, Scientific Herald of Uzhhorod University. Series ‘Physics’, No. 39: 93 (2016) (in Ukrainian); https://doi.org/10.24144/2415-8038.2016.39.93-99
  24. A.K. Shuaibov, A.Y. Minya, A.A. Malinin, A.N. Malinin, Z.T. Gomoki, I.V. Shevera, and V.V. Danilo, Electronic Processing of Materials, 55, No. 4: 56 (2019) (in Russian); https://doi.org/10.5281/zenodo.3369706
  25. O. Shuaibov, V. Chyhin, A. Malinina, V. Danylo, and V. Chynin, Herald of Khmelnytskyi National University. Technical Sciences, 4, 209 (2019); http://journals.khnu.km.ua/vestnik/wp-content/uploads/2021/01/35-7.pdf
  26. V.V. Danilo, O.K. Shuaibov, O.Y. Minya, Z.T. Gomoki, I.V. Shevera, A.O. Malinina, and O.M. Malinin, Int. Conf. Scientists and Post-Graduates Institute of Electron Physics–IEP-2019 (21–24 May, 2019, Uzhhorod), p. 61.
  27. A.A. Malinina, A.K. Shuaibov, A.Y. Minya, A.N. Malinin, R.V. Hritsak, I.V. Shevera, and V.V. Danilo, Int. Conf. Scientists and Post-Graduates Institute of Electron Physics–IEP-2019 (21–24 May, 2019, Uzhgorod), p. 87.
  28. V.F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (New York: Nova Science Publishers Inc.: 2014).
  29. A. Omarov, V.S. Kurbanismailov, G.B. Ragimkhanov, M.Kh. Gadzhiev, and M.V. Kurbanismailov, Bulletin of the Dagestan University, 6: 5 (2012) (in Russian).
  30. V.S. Kurbanismailov, O.A. Omarov, and G.B. Ragimkhanov, Prikladnaya Fizika, 2: 35 (2014) (in Russian).
  31. O.A. Omarov, N.O. Omarova, P.Kh. Omarova, and A.A. Aliverdiev, High Temperature, 57: 156 (2019); https://doi.org/10.1134/S0018151X19020159
  32. O.K. Shuaibov, A.A. Malinina, and A.N. Malinin, Characteristics and Parameters of Overvoltage of a Nanosecond Discharge in Vapor–Gas Sums and the Development of New Gas-Discharge Lamps (Uzhgorod: Uzhhorod National University–Publishing House ‘Hoverla’: 2021) (in Ukrainian).
  33. O.Y. Minya. V.M. Krasilinets, O.K. Shuaibov, I.V. Shever, Z.T. Gomoki, M.M. Chavarga, A.M. Solomon, and V.I. Mikla, Scientific Herald of Uzhhorod University. Series ‘Physics’, No. 46: 84 (2019); https://doi.org/10.24144/2415-8038.2019.46.84-91
  34. O.K. Shuaibov, O.Y. Minya, M.P. Chuchman, A.O. Malinina, O.M. Malinin, V.V. Danilo, and Z.T. Gomoki, Ukrainian Journal of Physics, 63, No. 9: 790 (2018); https://doi.org/10.15407/ujpe63.9.790
  35. O.K. Shuaibov, A.O. Malinina, and O.M. Malinin, New Gas-Discharging Methods of Obtaining Selective Ultraviolet and Visible Radiation and Synthesis of Nanostructures of Oxides of Transition Metals (Uzhgorod: Uzhhorod National University–Publishing House ‘Hoverla’: 2019) (in Ukrainian).
  36. D.V. Beloplotov, M.I. Lomaev, D.A. Sorokin, and V.F. Tarasenko, Journal of Technical Physics, 88, No. 6: 819 (2018) (in Russian); https://doi.org/10.21883/JTF.2018.06.46032.2465
  37. D.V. Beloplotov, V.I. Lomaev, D.A. Sorokin, and V.F. Tarasenko, Journal of Physics: Conference Series, 652: 012012 (2015); https://doi.org/10.1088/1742-6596/652/1/012012
  38. D.V. Beloplotov, M.I. Lomaev, and V.F. Tarasenko, Atmospheric and Oceanic Optics, 28: 476 (2015); https://doi.org/10.1134/S1024856015050024
  39. D.V. Beloplotov, V.F. Tarasenko, and M.I. Lomaev, Atmospheric and Oceanic Optics, 29, No. 2: 96 (2016) (in Russian); https://doi.org/10.15372/AOO20160202
  40. S.I. Maximov, A.V. Kretinina, N.S. Fomina, and L.N. Gall, Scientific Instrument Making, 25, No. 1: 36 (2015).
  41. V.I. Tyutyunnikov, East European Journal of Physics, 2, No. 3: 64 (2015); https://periodicals.karazin.ua/eejp/article/view/4450
  42. A.M. Ampilov, E.M. Barkhudarov, Yu.N. Kozlov, I.A. Kossy, and M.A. Misyakan, Plasma Physics Reports, 45, No. 3: 246 (2019); https://doi.org/10.1134/S036729211902001X
  43. A.K. Shuaibov, A.I. Minya, A.A. Маlinina, and A.N. Маlinin, Abstracts of the 6th Int. Sci. Practical Conf. ‘Science, Society, Education: Topical Issues and Development Prospects’ (Kharkiv: 2020), p. 323.
  44. A. Shuaibov, A. Minya, A. Malinina, A. Malinin, and Z. Gomoki, Highlights in BioScience, 3: 20211 (2020); https://doi.org/10.36462/H.BioSci.20211
  45. A.E. Egorov and V.V. Chernyshev, Bulletin of the Voronezh State University. Series Physics and Mathematics, 2: 8 (2005).
  46. V.S. Kortov, A.E. Ermakov, A.F. Zatsepin, M.A. White, and S.V. Nikiforov, Solid State Physics, 50, No. 5: 916 (2008).
  47. I.V. Gassenkova, N.I. Mukhurov, and Ya.M. Vahioh, Doklady BGUIR, No. 2: 114 (2016) (in Russian); https://doklady.bsuir.by/jour/article/view/639/639
  48. A.N. Gomonai, Journal of Applied Spectroscopy, 82: 13 (2015); https://doi.org/10.1007/s10812-015-0057-4
  49. D. Levko and L.L. Raja, Physics of Plasmas, 22, No. 12: 123518 (2016); https://doi.org/10.1063/1.4939022
  50. J. López-García, M. Placidi, X. Fontané, V. Izquierdo-Roca, M. Espindola, E. Saucedo, C. Guillén, J. Herrero, and A. Pérez-Rodriguez, Solar Energy Materials and Solar Cells, 132: 245 (2015); https://doi.org/10.1016/j.solmat.2014.09.003
  51. R.V. Hrytsak, A.O. Malinina, O.J. Minya, O.K. Shuaibov, and S.Y. Neymet, XIX International Young Scientists Conference on Applied Physics (21–25 May, 2019, Kyiv) (Kyiv: Taras Shevchenko National University of Kyiv: 2019), p. 71.
  52. A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, R.V. Hrytsak, A.A. Malinina, and A.N. Malinin, Journal of Physics and Chemistry Research, 1, No. 9: 1 (2019).
  53. A.K. Shuaibov, A.I. Minya, A.A. Маlinina, R.V. Gritsak, and A.N. Маlinin, Ukrainian Journal of Physics, 65, No. 5: 400 (2020); https://doi.org/10.15407/ujpe65.5.400
  54. A.K. Shuaibov, A.Y. Minya, R.V. Hrytsak, A.A. Malinina, and A.N. Malinin, Advances in Nanoscience and Nanotechnology, 4, No. 1: 1 (2020).
  55. A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, A.A. Malinina, A.N. Malinin, V.V. Danilo, Yu.Yu. Bilak, and Ya.Ch. Kolozhvari, HSOA Journal of Biotech Research & Biochemistry, 3, No. 1: 100005 (2020).
  56. A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, R.V. Hrytsak, A.A. Malinina, A.N. Malinin, V.M. Krasilinets, and V.M. Solomon, Surface Engineering and Applied Electrochemistry, 56: 474 (2020); https://doi.org/10.3103/S1068375520040158
  57. A.K. Shuaibov, A.Y. Minya, M.P. Chuchman, A.A. Malinina, A.N. Malinin, T.Z. Gomoki, and Y.Ch. Kolozvari, Plasma Research Express, 1: 015003 (2018); https://doi.org/10.1088/2516-1067/aae5ca
  58. A.O. Malinina, R.V. Grytsak, O.K. Shuaibov, O.Y. Mynya, and O.M. Malinin, 8th Int. Conf. ‘Medical Physics – Successful Development, Problems, New Technologies’ (26–27 September, 2019, Kyiv, Ukraine), p. 216 (in Ukrainian).
  59. O.K. Shuaibov, O.Y. Minya, Z.T. Gomoki, R.V. Hrytsak, A.O. Malinina, and O.M. Malinin, Methods for the Synthesis of Thin Chalcopyrite Films in an Acid-Free Gas Medium: Patent UA 142634 (Publ. 25.06.2020, Bull. No. 12, 2018) (in Ukrainian).
  60. I.E. Kacher, A.K. Shuaibov, M.Yu. Rigan, and A.I. Dashchenko, High Temperature, 40: 814 (2002); https://doi.org/10.1023/A:1021412930269
  61. R. Shuker, Y. Binur, and A. Szöke, Phys. Rev. A, 12, No. 2: 512 (1975); https://doi.org/10.1103/PhysRevA.12.515
  62. L.M. Biberman, V.S. Vorobiev, and I.T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma (Moscow: Nauka: 1982) (in Russian).
  63. W. Lochte-Holtgreven, Plasma Diagnostics (Amsterdam: North-Holland: 1968).
  64. M. Chuchuman, L. Mesarosh, and A. Shuaibov, Optics, 4, No. 5: 31 (2015); https://doi.org/10.11648/j.optics.20150405.11
  65. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, Optical Materials, 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  66. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, Annals of Physics, 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  67. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Materials Today: Proceedings, 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  68. A.K. Shuaibov, M.P. Chuchmana, and L.V. Mesarosh, Surface Engineering and Applied Electrochemistry, 54, No. 3: 267 (2018); https://doi.org/10.3103/S1068375518030122
  69. A. Shuaibov, A. Minya, A. Malinina, Z. Gomoki, and V. Danilo, Journal of Physics and Chemistry Research, 1, No. 1: 1 (2019).
  70. A. Shuaibov, A. Minya, I. Shevera, A. Malinina, R. Gritsak, A. Malinin, Z. Gomoki, and V. Danilo, Highlihts in BioScience, 3: 1 (2020); https://doi.org/10.36462/H.BioSci.20207
  71. N.A. Bulychev, M.A. Kazaryan, L.L. Chaikov, I.S. Burkhanov, and V.I. Krasovskii, Bulletin of the Lebedev Physics Institute, 41: 264 (2014); https://doi.org/10.3103/S106833561409005X
  72. A.K. Shuaibov, Y. Minya, Z.T. Gomoki, A.A. Malinina, A.N. Malinin, I.V. Shevera, and V.V. Danilo, Surface Engineering and Applied Electrochemistry, 56: 210 (2020); https://doi.org/10.3103/S106837552004016X
  73. V.E. Kaydashev, E.M. Kaydashev, M. Peres, T. Monteiro, M.R. Correia, and N.A. Sobolev, Journal of Technical Physics, 79, No. 11: 45 (2009).
  74. I.V. Shevera, O.I. Nalima, A.K. Shuaibov, M.Yu. Sechka, V.V. Danilo, and Z.T. Gomoku, Proc. Int. Conf. of Young Scientists and Graduate Students (May 23–26, 2017, Uzhgorod), p. 152.
  75. O. Mynia, A. Shuaibov, R. Holomb, V. Danylo, I. Shevera, and V. Mitsa, Proc. XIII Int. Conf. ‘Electronics and Applied Physics’ (October 24–27, 2017, Kyiv, Ukraine) (Kyiv: Taras Shevchenko National University of Kyiv: 2017), p. 153.
  76. E.N. Zamanova and L.A. Aliyeva, Fizika, XIV, No. 3: 194 (2008).
  77. B. Farmanfarmaei, M.R. RashidianVaziri, and F. Hajiesmaeilbaigi, Quantum Electronics, 44, 11: 1029 (2014); https://doi.org/10.1070/QE2014v044n11ABEH015308
  78. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Physica Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  79. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, EPL, 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  80. D.A. Kudryashov, A.S. Gudovskikh, A.V. Babichev, A.V. Filimonov, A.M. Mozharov, V.F. Agekyan, E.V. Borisov, A.Yu. Serov, and N.G. Filosofov, Physics and Technology of Semiconductors, 51: 110 (2017); https://doi.org/10.1134/S1063782617010110
  81. A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, Z.T. Gomoki, V.V. Danylo, and Yu.Yu. Bilak, Journal of Metallic Material Research, 3, No. 2: 37 (2020); https://ojs.bilpublishing.com/index.php/jmmr/article/view/2441
  82. V.M. Holovey, K.P. Popovych, M.V. Prymak, M.M. Birov, V.M. Krasilinets, and V.I. Sidey, Physica B, 450: 32 (2014); https://doi.org/10.1016/j.physb.2014.05.059