Binary Molybdenum Compounds: Promising Materials for Novel Physics of Superconductivity and Practical Applications

A. P. Shapovalov$^{1,2}$, M. O. Belogolovskii$^{2,3}$, O. O. Boliasova$^{1,4}$, and O. A. Kordyuk$^{1,2}$

$^1$Kyiv Academic University, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$Vasyl’ Stus Donetsk National University, 21 600-richchya Str., UA-21021 Vinnytsia, Ukraine
$^4$Donetsk Institute for Physics and Engineering named after O.O. Galkin of the N.A.S. of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine

Received 26.06.2021; final version — 12.07.2021 Download PDF logo PDF

Abstract
This review article summarizes recent progress in low-temperature properties of binary molybdenum-based alloys and intermetallic compounds, focusing mainly on superconductivity characteristics reflecting novel physics as well as possible applications. We present experimental data proving two-band/two-gap nature of some superconducting compounds. As argued, the binary Mo–Re alloys with rhenium predominance represent an ideal and rare test system where related compounds with different Re/Mo ratios can be either centrosymmetrical or noncentrosymmetrical, leading in the latter case to possible mixed superconducting pairing. It is demonstrated that two MoC phases, namely, α-MoC and γ-MoC phases, are topologically nontrivial in their bulk and surface band structures, while amorphous MoSi and MoGe superconductors are among highly-promising materials for different superconductivity applications. We conclude the review with a brief discussion of new tendencies in computer modelling of the structure and properties of binary compounds, using as an example recently discovered stoichiometric MoBi2 compound, and practical prospects for already known and studied molybdenum-based superconductors.

Keywords: molybdenum-based compounds, superconductivity properties, two-band/two-gap materials, topologically nontrivial phases, superconductivity applications.

DOI: https://doi.org/10.15407/ufm.22.03.352

Citation: A. P. Shapovalov, M. O. Belogolovskii, O. O. Boliasova, and O. A. Kordyuk, Binary Molybdenum Compounds: Promising Materials for Novel Physics of Superconductivity and Practical Applications, Progress in Physics of Metals, 22, No. 3: 352–381 (2021)


References  
  1. Applications of Molybdenum Metal and Its Alloys (London: IMOA: 2013); https://www.imoa.info/download_files/molybdenum/Applications_Mo_Metal.pdf
  2. A.I. Braginski, J. Supercond. Nov. Magn., 32: 23 (2019); https://doi.org/10.1007/s10948-018-4884-4
  3. L. Fàbrega, A.Camón, P. Strichovanec, and C. Pobes, IEEE Transactions on Applied Superconductivity, 29, No. 5: 2100405 (2019); https://doi.org/10.1109/TASC.2019.2903994
  4. A. Hirakawa, K. Makise, T. Kawaguti, and B. Shinozaki, J. Phys.: Cond. Mat., 20, No. 48: 485206 (2008); https://doi.org/10.1088/0953-8984/20/48/485206
  5. S. Sharma, E.P. Amaladass, N. Sharma, V. Harimohan, S. Amirthapandian, and A. Mani, Physica B, 514: 89 (2017); https://doi.org/10.1016/j.physb.2017.03.044
  6. T. Shang, D.J. Gawryluk, J.A.T. Verezhak, E. Pomjakushina, M. Shi, M. Medarde, J. Mesot, and T. Shiroka, Phys. Rev. Materials, 3, No. 2: 024801 (2019); https://doi.org/10.1103/PhysRevMaterials.3.024801
  7. M. Okada, E. Rotenberg, S.D. Kevan, J. Schafer, B. Ujfalussy, G.M. Stocks, B. Genatempo, E. Bruno, and E.W. Plummer, New J. Phys., 15: 093010 (2013); https://doi.org/10.1088/1367-2630/15/9/093010
  8. I.M. Lifshitz, Sov. Phys. JETP, 11, No. 5: 1130 (1960); http://www.jetp.ac.ru/cgi-bin/dn/e_011_05_1130.pdf
  9. I.M. Lifshitz, M.Ya. Azbel, and M.I. Kaganov, Electron Theory of Metals (New York: Consultant Bureau: 1973).
  10. Y.M. Blanter, M.I. Kaganov, A.V. Pantsulaya, and A.A. Varlamov, Phys. Rep., 245, No. 4: 159 (1994); https://doi.org/10.1016/0370-1573(94)90103-1
  11. N.B. Brandt, N.I. Ginzburg, T.A. Ignat’eva, B.G. Lazarev, L.S. Lazareva, and V.I. Makarov, J. Exp. Theor. Phys., 22, No. 1: 61 (1966); http://www.jetp.ac.ru/cgi-bin/dn/e_022_01_0061.pdf
  12. N.V. Skorodumova, S.I. Simak, I.A. Abrikosov, B. Johansson, and Yu.Kh. Vekilov, Phys. Rev. B, 57, No. 23: 14673 (1998); https://doi.org/10.1103/PhysRevB.57.14673
  13. L.S. Sharath Chandra, S. Sundar, S. Banik, S.K. Ramjan, M.K. Chattopadhyay, S.N. Jha, and S.B. Roy, J. Appl. Phys., 127, No. 16: 163906 (2020); https://doi.org/10.1063/1.5143836
  14. D.L. Davidson and F.R. Brotzen, Acta Metall., 18, No. 5: 463 (1970); https://doi.org/10.1016/0001-6160(70)90132-X
  15. H.G. Smith, N. Wakabayashi, and M. Mostoller, Proceedings of Second Rochester Conference on Superconductivity in d- and f-band Metals (Ed. D.H. Douglass) (New York: Plenum Press: 1976), p. 223.
  16. T.A. Ignat’eva, Phys. Solid State, 49: 403 (2007); https://doi.org/10.1134/S106378340703002X
  17. T.A. Ignatyeva and A.N. Velikodny, Low Temp. Phys., 30: 388 (2004); https://doi.org/10.1063/1.1739133
  18. S. Sundar, L.S. Sharath Chandra, M.K. Chattopadhyay, S.K. Pandey, D. Venkateshwarlu, R. Rawat, V. Ganesan, and S.B. Roy, New J. Phys., 17: 053003 (2015); https://doi.org/10.1088/1367-2630/17/5/053003
  19. W.R. Cox, D.J. Hayes, and F.R. Brotzen, Phys. Rev. B, 7, No. 8: 3580 (1973); https://doi.org/10.1103/PhysRevB.7.3580
  20. E.L. Wolf, Principles of Electron Tunneling Spectroscopy (New York: Oxford University Press: 2012); https://doi.org/10.1093/acprof:oso/9780199589494.001.0001
  21. S. Sundar, L.S. Sharath Chandra, M.K. Chattopadhyay, and S.B. Roy, J. Phys. Condens. Mater, 27, No. 4: 045701 (2015); https://doi.org/10.1088/0953-8984/27/4/045701
  22. S. Sundar, S. Banik, L.S. Sharath Chandra, M.K. Chattopadhyay, T. Ganguli, G.S. Lodha, S.K. Pandey, D.M. Phase, and S.B. Roy, J. Phys. Condens. Mater, 28, No. 31: 315502 (2016); https://doi.org/10.1088/0953-8984/28/31/315502
  23. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, and M.I. Katsnelson, Phys. Rev. Lett., 112, No. 7: 070403 (2014). https://doi.org/10.1103/PhysRevLett.112.070403
  24. G.E. Volovik, Phys.-Usp., 61, No. 1: 89 (2018); https://doi.org/10.3367/UFNe.2017.01.038218
  25. D. Li, B. Rosenstein, B.Ya. Shapiro, and I. Shapiro, Phys. Rev. B, 95, No. 9: 094513 (2017); https://doi.org/10.1103/PhysRevB.95.094513
  26. M. Alidoust, K. Halterman, and A.A. Zyuzin, Phys. Rev. B, 95, No. 15: 155124 (2017); https://doi.org/10.1103/PhysRevB.95.155124
  27. A.A. Varlamov, Y.M. Galperin, S.G. Sharapov, and Y. Yerin, Low Temp. Phys., 47: No. 8 (2021); https://arxiv.org/abs/2103.04642
  28. A.J. Leggett, Progr. Theor. Phys., 36, No. 5: 901 (1966); https://doi.org/10.1143/PTP.36.901
  29. Y. Tanaka, Supercond. Sci. Technol., 28, No. 3: 034002 (2015); https://doi.org/10.1088/0953-2048/28/3/034002
  30. D.F. Agterberg, P.M.R. Brydon, and C. Timm, Phys. Rev. Lett., 118, No. 12: 127001 (2017); https://doi.org/10.1103/PhysRevLett.118.127001
  31. H. Suhl, B.T. Matthias, and L.R. Walker, Phys. Rev. Lett., 3, No. 12: 552 (1959); https://doi.org/10.1103/PhysRevLett.3.552
  32. X.X. Xi, Rep. Prog. Phys., 71, No. 11: 116501 (2008); https://doi.org/10.1088/0034-4885/71/11/116501
  33. H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Mater. Today, 21, No. 3: 278 (2018); https://doi.org/10.1016/j.mattod.2017.09.006
  34. V.B. Zabolotnyy, D.S. Inosov, D.V. Evtushinsky, A. Koitzsch, A.A. Kordyuk, G.L. Sun, J.T. Park, D. Haug, V. Hinkov, A.V. Boris, C.T. Lin, M. Knupfer, A.N. Yaresko, B. Büchner, A. Varykhalov, R. Follath, and S.V. Borisenko, Nature, 457: 569 (2009); https://doi.org/10.1038/nature07714
  35. A.A. Kordyuk, Low Temp. Phys., 38: 888 (2012); https://doi.org/10.1063/1.4752092
  36. A.A. Kordyuk, Low Temp. Phys., 44: 477 (2018); https://doi.org/10.1063/1.5037550
  37. A. Bianconi, Natute Phys., 9: 536 (2013); https://doi.org/10.1038/nphys2738
  38. M. Zehetmayer, Supercond. Sci. Technol., 26, No. 4: 043001 (2013); https://doi.org/10.1088/0953-2048/26/4/043001
  39. G.R. Stewart and A.L. Giorgi, Solid State Commun., 28, No. 12: 969 (1978); https://doi.org/10.1016/0038-1098(78)90650-6
  40. M.S. Kim, J.A. Skinta, T.R. Lemberger, W.N. Kang, H.-J. Kim, E.-N. Choi, and S.-I. Lee, Phys. Rev. B, 66, No. 6: 064511 (2002); https://doi.org/10.1103/PhysRevB.66.064511
  41. N. Agrait, A.L. Yeyati, and J.M. van Ruitenbeek, Phys. Rep., 377, Nos. 2–3: 81 (2003); https://doi.org/10.1016/S0370-1573(02)00633-6
  42. M. Aono and T. Hasegawa, Proc. IEEE, 98, No. 12: 2228 (2010); https://doi.org/10.1109/JPROC.2010.2061830
  43. G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B, 25. No. 7: 4515 (1982); https://doi.org/10.1103/PhysRevB.25.4515
  44. S. Volkov, M. Gregor, T. Plecenik, E. Zhitlukhina, M. Belogolovskii, and A. Plecenik, Appl. Nanosci., 22 February (2021); https://doi.org/10.1007/s13204-021-01734-6
  45. E. Zhitlukhina, I. Devyatov, O. Egorov, M. Belogolovskii, and P. Seidel, Nanoscale Res. Lett., 11: 58 (2016); https://doi.org/10.1186/s11671-016-1285-0
  46. D. Daghero and R.S. Gonnelli, Supercond. Sci. Technol., 23, No. 4: 043001 (2010); https://doi.org/10.1088/0953-2048/23/4/043001
  47. V. Tarenkov, A. Shapovalov, O. Boliasova, M. Belogolovskii, and A. Kordyuk, Low Temp. Phys., 47, No. 2: 101 (2021); https://doi.org/10.1063/10.0003168
  48. V. Tarenkov, A. Dyachenko, V. Krivoruchko, A. Shapovalov, and M. Belogolovskii, J. Supercond. Nov. Magn., 33: 569 (2020); https://doi.org/10.1007/s10948-019-05297-0
  49. J. Talvacchio, M.A. Janocko, and J. Greggi, J. Low Temp. Phys., 64: 395 (1986); https://doi.org/10.1007/BF00681709
  50. Ya.M. Blanter and M. Buttiker, Phys. Rep., 336, Nos. 1–2: 1 (2000); https://doi.org/10.1016/S0370-1573(99)00123-4
  51. D. Wu, B. Dolgin, G. Jung, V. Markovich, Y. Yuzhelevski, M. Belogolovskii, and Ya.M. Mukovskii, Appl. Phys. Lett., 90: 242110 (2007); https://doi.org/10.1063/1.2748083
  52. E.S. Zhytlukhina, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1197 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.09.1197
  53. T. Shang, C. Baines, L.-J. Chang, D.J. Gawryluk, E. Pomjakushina, M. Shi, M. Medarde, and T. Shiroka, npj Quantum Mater., 5: 76 (2020); https://doi.org/10.1038/s41535-020-00279-1
  54. A. Carrington and F. Manzano, Physica C, 385, Nos. 1–2: 205 (2003); https://doi.org/10.1016/S0921-4534(02)02319-5
  55. M.A. McGuire and D.S. Parker, Phys. Rev. B, 93, No. 6: 064507 (2016); https://doi.org/10.1103/PhysRevB.93.064507
  56. T. Shang, W. Xie, D.J. Gawryluk, R. Khasanov, J.Z. Zhao, M. Medarde, M. Shi, H.Q. Yuan, E. Pomjakushina, and T. Shiroka, New J. Phys., 22: 093016 (2020); https://doi.org/10.1088/1367-2630/abac3b
  57. E.V. Clougherty, K.H. Lothrop, and J.A. Kafalas, Nature, 191: 1194 (1961); https://doi.org/10.1038/1911194a0
  58. R.H. Willens, E. Buehler, and B.T. Matthias, Phys. Rev., 159, No. 2: 327 (1967); https://doi.org/10.1103/PhysRev.159.327
  59. K. Kuo and G. Hägg, Nature, 170: 245 (1952); https://doi.org/10.1038/170245a0
  60. M. Trgala, M. Žemlička, P. Neilinger, M. Rehák, M. Leporis, Š. Gaži, J. Greguš, T. Pleceník, T. Roch, E. Dobročka, and M. Grajcar, Appl. Surf. Sci., 312: 216 (2014); https://doi.org/10.1016/j.apsusc.2014.05.200
  61. M. Žemlička, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, and P. Samuely, Phys. Rev. B, 102, No. 18: 180508(R) (2020); https://doi.org/10.1103/PhysRevB.102.180508
  62. A. Huang, A.D. Smith, M. Schwinn, Q. Lu, T.-R. Chang, W. Xie, H.-T. Jeng, and G. Bian, Phys. Rev. Mater., 2, No. 5: 054205 (2018); https://doi.org/10.1103/PhysRevMaterials.2.054205
  63. G. Bergmann, Phys. Rep., 27, No. 4: 159 (1976); https://doi.org/10.1016/0370-1573(76)90040-5
  64. M.M. Collver and R.H. Hammond, Phys. Rev. Lett., 30, No. 3: 92 (1973); https://doi.org/10.1103/PhysRevLett.30.92
  65. P. Watson, B. Bandyopadhyay, Y. Bo, D. Rathnayaka, and D.G. Naugle, Mater. Sci. Eng., 99, Nos. 1–2: 175 (1988); https://doi.org/10.1016/0025-5416(88)90316-3
  66. A. Banerjee, L.J. Baker, A. Doye, M. Nord, R.M. Heath, K. Erotokritou, D. Bosworth, Z.H. Barber, I. MacLaren, and R.H. Hadfield, Supercond. Sci. Technol., 30, No. 8: 084010 (2017); https://doi.org/10.1088/1361-6668/aa76d8
  67. V.B. Verma, A.E. Lita, M.R. Vissers, F. Marsili, D.P. Pappas, R.P. Mirin, and S.W. Nam, Appl. Phys. Lett., 105, No. 2: 022602 (2014); https://doi.org/10.1063/1.4890277
  68. A.E. Lita, V.B. Verma, R.D. Horansky, J.M. Shainline, R.P. Mirin, and S. Nam, MRS Online Proceedings Library, 1807: 1 (2015); https://doi.org/10.1557/opl.2015.544
  69. J. Lefebvre, M. Hilke, and Z. Altounian, Phys. Rev. B, 79, No. 18: 184525 (2009); https://doi.org/10.1103/PhysRevB.79.184525
  70. M. Baggioli, C. Setty, and A. Zaccone, Phys. Rev. B, 101, No. 21: 214502 (2020); https://doi.org/10.1103/PhysRevB.101.214502
  71. P.B. Allen, J.L. Feldman, J. Fabian, and F. Wooten, Phil. Mag. B, 79, Nos. 11–12: 1715 (1999); https://doi.org/10.1080/13642819908223054
  72. Y.M. Beltukov, C. Fusco, D.A. Parshin, and A. Tanguy, Phys. Rev. E, 93, No. 2: 023006 (2016); https://doi.org/10.1103/PhysRevE.93.023006
  73. W. Steurer and J. Dshemuchadse, Intermetallics: Structures, Properties, and Statistics (Oxford: Oxford University Press: 2016).
  74. A.B. Altman, A.D. Tamerius, N.Z. Koocher, Y. Meng, C.J. Pickard, J.P.S. Walsh, J.M. Rondinelli, S.D. Jacobsen, and D.E. Freedman, J. Am. Chem. Soc., 143, No. 1: 214 (2021); https://doi.org/10.1021/jacs.0c09419
  75. C.J. Pickard, I. Errea, and M.I. Eremets, Annu. Rev. Condens. Matter Phys., 11: 57 (2020); https://doi.org/10.1146/annurev-conmatphys-031218-013413
  76. R.G. Pearson, J. Am. Chem. Soc., 85, No. 22: 3533 (1963); https://doi.org/10.1021/ja00905a001