Plasticity: from Crystal Lattice to Macroscopic Phenomena

L. B. Zuev, S. A. Barannikova, V. I. Danilov, and V. V. Gorbatenko

Institute of Strength Physics and Materials Science, SB of the RAS, 2/4, Akademicheskiy Ave., 634055 Tomsk, Russian Federation

Received 10.11.2020; final version — 10.02.2021 Download PDF logo PDF

Abstract
New representations concerning plasticity physics in crystals are discussed. The model of plastic flow is suggested, which can describe its main regularities. With the use of the experimental investigation, it is shown that the plastic flow localization plays the role in the evolution of plastic deformation. Obtained data are explained with the application of the principles of nonequilibrium-systems’ theory. The quasi-particle is introduced for the description of plasticity phenomenon. It is established the relation between plasticity characteristics of metals and their position in Periodic table of the elements. A new model is elaborated to address localized plastic-flow evolution in solids. The basic assumption of the proposed model is that the elementary plasticity acts evolving in the deforming of medium would generate acoustic emission pulses, which interact with the plasticity carriers and initiate new elementary shears. As found experimentally, the macrolocalization of plastic flow involves a variety of autowave processes. To address the phenomenon of localized plastic-flow autowaves, a new quasi-particle called ‘autolocalizon’ is introduced; the criterion of validity of the concept is assessed.

Keywords: alloys, deformation, creep, self-organization, strength, plasticity, localization, failure.

DOI: https://doi.org/10.15407/ufm.22.01.003

Citation: L. B. Zuev, S. A. Barannikova, V. I. Danilov, and V. V. Gorbatenko, Plasticity: from Crystal Lattice to Macroscopic Phenomena, Progress in Physics of Metals, 22, No. 1: 3–57 (2021)


References  
  1. F. Hund, Geschichte der Quanten Theorie (Zürich: Bibl. Inst.: 1975) (in German).
  2. R. Asaro and V. Lubarda, Mechanics of Solids and Materials (Cambridge: University Press: 2006).
  3. E.C. Aifantis, Acta Mech., 225: 999 (2014); https://doi.org/10.1007/s00707-013-1076-y.
  4. D. Kuhlmann-Wilsdorf, Dislocations in Solids (Eds. F.R.N. Nabarro and M.S. Duesbery) (Amsterdam: Elsevier: 2002).
  5. A. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford: University Press: 2008); https://doi.org/10.1093/acprof:oso/9780198516002.001.0001.
  6. D. Hull and D.J. Bacon, Materials Today, 14, No. 10: 502 (2011); https://doi.org/10.1016/S1369-7021(11)70217-6.
  7. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation (Berlin: Springer: 2010); https://doi.org/10.1007/978-3-642-03177-9.
  8. R. Abu Al-Rub and G.Z. Voyiadjis, Int. J. Plast., 22, No. 4: 654 (2006); https://doi.org/10.1016/j.ijplas.2005.04.010.
  9. L.S. Langer, E. Bouchbinder, and T. Lookman, Acta Mater., 58, No. 10: 3718 (2010); https://doi.org/10.1016/j.actamat.2010.03.009.
  10. H.M. Zbib and T.D. de la Rubia, Int. J. Plast., 18, No. 9: 1133 (2002); https://doi.org/10.1016/S0749-6419(01)00044-4.
  11. A. Seeger and W. Franck, Non-Linear Phenomena in Material Science (Eds. L.P. Kubin and G. Martin) (New York: Trans. Tech. Publ.: 1987).
  12. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations (New York: John Wiley and Sons: 1977).
  13. G. Nicolis and I. Prigogine, Exploring Complexity. An Introduction (New York: W.H. Freeman and Company: 1989).
  14. A. Olemskoi and A. Savelyev, Phys. Rep., 419, Nos. 4–5: 145 (2005); https://doi.org/10.1016/j.physrep.2005.08.003.
  15. H. Haken, Information and Self-Organization. A Macroscopic Approach to Complex Systems (Berlin: Springer: 2006).
  16. V.I. Krinsky, Self-Organization: Autowaves and Structures Far from Equilibrium (Berlin: Springer-Verlag: 1984).
  17. W. Ebeling, A. Engeland, and R. Feistel, Physik der Evolutionprocesse (Berlin: Akademie Verlag: 1992) (in German).
  18. H.J. Jensen, Self-Organized Criticality. Emergent Complex Behavior in Physical and Biological Systems (Cambridge: University Press: 1998).
  19. S.P. Kurdyumov, Int. J. Mod. Phys. C, 1, No. 4: 299 (1990); https://doi.org/10.1142/S0129183190000177.
  20. Y.L. Klimontovich, Zs. Phys. B, 66: 125 (1987); https://doi.org/10.1007/BF01312769.
  21. A. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford: University Press: 2003).
  22. J. Pelleg, Mechanical Properties of Materials (Dordrecht: Springer: 2013); https://doi.org/10.1007/978-94-007-4342-7.
  23. L.B. Zuev, V.I. Danilov, N.V. Kartashova, and S.A. Barannikova, Mater. Sci. Eng. A, 234–236: 699 (1997); https://doi.org/10.1016/S0921-5093(97)00242-6.
  24. P.K. Rastogi, Digital Speckle Interferometry and Related Techniques (Ed. P.K. Rastogi) (New York: John Wiley and Sons: 2001).
  25. L.B. Zuev, Autowave Plasticity. Localization and Collective Modes (Moscow: Fizmatlit: 2018) (in Russian).
  26. A. Asharia, A. Beaudoin, and R. Miller, Mat. Mech. Solids, 13: 292 (2008); https://doi.org/10.1177/1081286507086903.
  27. R.J. McDonald, C. Efstathiou, and P. Kurath, J. Eng. Mat. Tech., 131: 652 (2009); https://doi.org/10.1115/1.3120410.
  28. C. Fressengeas, A. Beaudoin, D. Entemeyer, T. Lebedkina, M. Lebyodkin, and V. Taupin, Phys. Rev. B, 79, No. 1: 14108 (2009); https://doi.org/10.1103/PhysRevB.79.014108.
  29. M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T.A. Lebedkina, and I.V. Shashkov, Acta Mater., 60, No. 9: 3729 (2012); https://doi.org/10.1016/j.actamat.2012.03.026.
  30. V.E. Vildeman, E.V. Lomakin, T.V. Tret’yakova, and M.P. Tret’yakov, Mech. Solids, 51: 612 (2016); https://doi.org/10.3103/S0025654416050150.
  31. E. Rizzi and P. Hähner, Int. J. Plast., 20, No. 1: 121 (2004); https://doi.org/10.1016/S0749-6419(03)00035-4.
  32. H. Kolsky, Stress Waves in Solids (New York: Dover Publ.: 2003).
  33. H. Kolsky and D. Rader, Fracture. An Advance Treatise (Ed. H. Liebowitz) (New York: Academic Press: 1968).
  34. V.A. Vasiliev, Y.M. Romanovsky, and V.G. Yakhno, Sov. Phys.–Usp., 22, No. 8: 615 (1979); https://doi.org/10.1070/PU1979v022n08ABEH005591.
  35. P. Hähner, Appl. Phys. A, 58: 41 (1994); https://doi.org/10.1007/BF00331515.
  36. L.B. Zuev, V.I. Danilov and N.V. Kartashova, JETP Lett., 60: 553 (1994).
  37. F.S. Crawford, Waves (New York: McGraw-Hill Comp.: 1968).
  38. L.B. Zuev, Annalen der Physik, 10, Nos. 11–12: 965 (2001); https://doi.org/10.1002/1521-3889(200111)10:11/12<965::AID-ANDP965>3.0.CO;2-N
  39. L.B. Zuev, Annalen der Physik, 16, No. 4: 286 (2007); https://doi.org/10.1002/andp.200610233.
  40. L.B. Zuev, V.I. Danilov, and S.A. Barannikova, Int. J. Plast., 17, No. 1: 47 (2001); https://doi.org/10.1016/S0749-6419(00)00018-8.
  41. L.B. Zuev, Phys. Wave Phenom., 20: 166 (2012); https://doi.org/10.3103/S1541308X12030028.
  42. G.A. Malygin, Phys. Sol. Stat., 43: 1909 (2001); https://doi.org/10.1134/1.1410630.
  43. H.G. Othmer, Nonlinear Wave Processes in Excitable Media (Eds. A.V. Holden, M. Marcus, and H.G. Othmer) (New York: Plenum Press: 1991), p. 213.
  44. V.A. Davydov, N.V. Davydov, G.V. Morozov, M.N. Stolyarov, and T. Yamaguchi, Cond. Matter Phys., 7, No. 3 (39) 565 (2004); https://doi.org/10.5488/CMP.7.3.565.
  45. B.B. Kadomtsev, Phys.–Usp., 37, No. 5: 425 (1994); https://doi.org/10.1070/PU1994v037n05ABEH000109.
  46. L.B. Zuev, Bull. Russ. Acad. Sci. Phys., 78: 957 (2014); https://doi.org/10.3103/S1062873814100256.
  47. D.J. Hudson, Statistics (Geneva: CERN: 1964).
  48. S.A. Barannikova, Tech. Phys. Lett., 30: 338 (2004); https://doi.org/10.1134/1.1748618.
  49. L.B. Zuev, S.F. Barannikova, V.I. Danilov and V.V. Gorbatenko, Phys. Wave Phenom., 17: 66 (2009); https://doi.org/10.3103/S1541308X09010117.
  50. V.V. Pustovalov, Low. Temp. Phys., 34, No. 9: 683 (2008); https://doi.org/10.1063/1.2973710.
  51. L.B. Zuev, B.S. Semukhin, and N.V. Zarikovskaya, Int. J. Sol. Struct., 40, No. 4: 941 (2003); https://doi.org/10.1016/S0020-7683(02)00612-1.
  52. G.B. Whithem, Linear and Nonlinear Waves (New York: John Wiley and Sons: 1974).
  53. M. Eigen and P. Schuster, The Hypercycle (Berlin: Springer-Verlag: 1979).
  54. D.D. Vvedensky, Partial Differential Equations (Wokingham: Addison-Wesley: 1993).
  55. R. Hill, The Mathematical Theory of Plasticity (Oxford: University Press: 1998).
  56. W. Oliferuk and M. Maj, Europ. J. Mech. A. Solids, 28, No. 2: 266 (2009); https://doi.org/10.1016/j.euromechsol.2008.06.003.
  57. A.A. Shibkov and A.E. Zolotov, JETP Lett., 90: 370 (2009); https://doi.org/10.1134/S0021364009170123.
  58. F. McClintock and A.S. Argon, Mechanical Behavior of Materials (Sydney: Addison-Wesley: 1966).
  59. A.Z. Patashinskii and V.L. Pokrovskii, Fluctuation Theory of Phase Transitions (London: Pergamon Press: 1979).
  60. L.B. Zuev and B.S. Semukhin, Phil. Mag. A, 82, No. 6: 1183 (2002); https://doi.org/10.1080/01418610208240024.
  61. L.I. Sedov, Mechanics of Continuous Media (Singapore: World Scientific: 1997).
  62. L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Oxford: Elsevier: 1987); https://doi.org/10.1016/C2013-0-03799-1.
  63. V.I. Alshits and V.L. Indenbom, Dislocations in Crystals (Ed. F.R.N. Nabarro) (Amsterdam: North-Holland: 1986), p. 43.
  64. D. Caillard and J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Oxford: Elsevier: 2003).
  65. H. Donth, Z. Phys., 149: 111 (1957).
  66. O.M. Braun and Y. Kivshar, The Frenkel–Kontorova Model: Concepts, Methods, and Applications (Berlin: Springer-Verlag: 2004); https://doi.org/10.1007/978-3-662-10331-9.
  67. S.K. Khannanov, Fiz. Met. Met., No. 4: 14 (1992).
  68. S.K. Khannanov and S.P. Nikanorov, Tech. Phys., 52: 70 (2007); https://doi.org/10.1134/S1063784207010124.
  69. G.F. Sarafanov and V.N. Perevezentsev, Tech. Phys. Lett., 31: 936 (2005); https://doi.org/10.1134/1.2136958.
  70. I.L. Maksimov, G.F. Sarafanov, and S.N. Nagornykh, Solid State Phys., 37: 3169 (1995).
  71. G.F. Sarafanov, Phys. Sol. Stat., 43: 263 (2001).
  72. G.F. Sarafanov, Phys. Sol. Stat., 50: 1868 (2008); https://doi.org/10.1134/S1063783408100144.
  73. G.A. Malygin, Phys.–Usp., 42, No. 9: 887 (1999); https://doi.org/10.1070/pu1999v042n09ABEH000563.
  74. G.A. Malygin, Phys. Sol. Stat., 47: 246 (2005); https://doi.org/10.1134/1.1866402.
  75. G.A. Malygin, Phys. Sol. Stat., 47: 896 (2005); https://doi.org/10.1134/1.1924852.
  76. G.A. Malygin, Phys. Sol. Stat., 48: 693 (2006); https://doi.org/10.1134/S1063783406040123.
  77. Y.A. Khon, Y.R. Kolobov, M.B. Ivanov and A.V. Butenko, Tech. Phys., 53: 328 (2008); https://doi.org/10.1134/S1063784208030079.
  78. L.B. Zuev, Y.A. Khon, and S.A. Barannikova, Tech. Phys., 55: 965 (2010); https://doi.org/10.1134/S106378421007008X.
  79. E. Zasimchuk, Yu. Gordienko, L. Markashova, and T. Turchak, J. Mat. Engng. Perf., 18: 947 (2009); https://doi.org/10.1007/s11665-008-9327-0.
  80. E. Zasimchuk, O. Baskova, O. Gatsenko, and T. Turchak, J. Mat. Eng. Perf., 27: 4183 (2018); https://doi.org/10.1007/s11665-018-3515-3.
  81. A.I. Olemskoi, Theory of Structure Transformation in Non-Equilibrium Condensed Matter (New York: NOVA Science: 1999).
  82. A.I. Olemskoi and I.A. Sklyar, Phys.–Usp., 35, No. 6: 455 (1992); https://doi.org/10.1070/PU1992v035n06ABEH002241.
  83. A.I. Olemskoi, Phys.–Usp., 44, No. 5: 479 (2001); https://doi.org/10.1070/PU2001v044n05ABEH000921.
  84. G.P. Cherepanov, A.S. Balankin, and V.S. Ivanova, Eng. Fract. Mech., 51: 997 (1995).
  85. A.S. Balankin, Tech. Phys. Lett., 15: 15 (1989).
  86. Y. Bayandin, V. Leont’ev, O. Naimark, and S. Permjakov, J. Phys. IV France, 134, 1015 (2006); https://doi.org/10.1051/JP4:2006134155.
  87. O.A. Plekhov, N. Saintier, and O. Naimark, Tech. Phys., 52: 1236 (2007); https://doi.org/10.1134/S106378420709023X.
  88. O.A. Plekhov, Tech. Phys., 56: 301 (2011). http://dx.doi.org/10.1134/S106378421102023X
  89. O. Naimark and M. Davydova, J. Phys. IV France, 6: 259 (1996); https://doi.org/10.1051/JP4:1996625.
  90. O.B. Naimark, Advances in Multifield Theories of Continua with Substructure (Eds. G. Capriz and P. Mariano) (Boston: Birkhauser Inc.: 2003), p. 75.
  91. I.A. Panteleev, O.A. Plekhov, and O.B. Naimark, Izv., Phys. Sol. Earth, 48: 504 (2012); https://doi.org/10.1134/S1069351312060055.
  92. E.V. Kozlov, V.A. Starenchenko, and N.A. Koneva, Metals, No. 5: 152 (1993).
  93. B. Lüthi, Physical Acoustics in the Solids (Berlin: Springer-Verlag, 2007).
  94. G.A. Malygin, Phys. Sol. Stat., 42: 72 (2000); https://doi.org/10.1134/1.1131170.
  95. G.A. Malygin, Phys. Sol. Stat., 42: 706 (2000); https://doi.org/10.1134/1.1131276.
  96. J.K. Burnett, Theory and Uses of Acoustic Emission (New York: Nova Sci. Publ.: 2012).
  97. T. Tokuoka and Y. Iwashimizu, Int. J. Sol. Struct., 4: 383 (1968).
  98. I. Kovács, O.Q. Chinh, and E. Kovács-Csetenyi, Phys. Stat. Sol. A, 19: 3 (2002); https://doi.org/10.1002/1521-396X(200211)194:1<3::AID-PSSA3>3.0.CO;2-K.
  99. L.I. Mirkin, Handbook of X-Ray Structural Analysis of Polycrystals (New York: Consultants Bureau: 1964).
  100. O.L. Anderson, Physical Acoustics: Principles and Methods (Eds. W.P. Mason and R.N. Thurston) (New York: Academic Press: 1965), p. 43.
  101. T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Berlin: Springer-Verlag: 1991).
  102. L. Zhang, N. Sekido, and T. Ohmura, Mater. Sci. Eng. A, 611: 188 (2014); https://doi.org/10.1016/j.msea.2014.05.073.
  103. R.E. Newnham, Properties of Materials (Oxford: University Press: 2005).
  104. L.B. Zuev, Tech. Phys. Lett., 31: 89 (2005); https://doi.org/10.1134/1.1877610.
  105. M.S. Ryvkin and Y.B. Rumer, Thermodynamics, Statistical Physics and Kinetics (Moscow: MIR Publ.: 1980).
  106. P. Landau, R.Z. Shneck, G. Makov, and A. Venkert, IOP Conf. Ser., 3: 012004 (2009); https://doi.org/10.1088/1757-899X/3/1/012004.
  107. L.D. Landau and E.M. Lifshitz, Statistical Physics (Oxford: Pergamon Press: 1969).
  108. E. Hug and C. Keller, Phil Mag. A, 99, No. 11: 1297 (2019); https://doi.org/10.1080/14786435.2019.1580397.
  109. L.B. Zuev and V.I. Danilov, Int. J. Sol. Struct., 34, No. 29: 3795 (1997); https://doi.org/10.1016/S0020-7683(97)00003-6.
  110. L.B. Zuev and V.I. Danilov, Phil. Mag. A, 79, No. 1: 43 (1999); https://doi.org/10.1080/01418619908214273.
  111. A. Ishii, J. Li, and S. Ogata, Int. J. Plast., 82: 32 (2016); https://doi.org/10.1016/j.ijplas.2016.01.019.
  112. R.A. Andrievski and A.M. Glezer, Phys.–Usp., 52, No. 4: 315 (2009); https://doi.org/10.3367/UFNe.0179.200904a.0337.
  113. L.B. Zuev, S.A. Barannikova, and A.G. Lunev, Prog. Phys. Met., 19, No. 4: 379 (2018) (in Russian); https://doi.org/10.15407/ufm.19.04.379.
  114. V.E. Nazarov, Phys. Sol. Stat., 58: 1719 (2016); https://doi.org/10.1134/S1063783416090249.
  115. J.J. Gilman, J. Appl. Phys., 36, No. 9: 2772 (1965); https://doi.org/10.1063/1.1714577.
  116. P.W. Atkins, Quanta (Oxford: Clarendon Press: 1974).
  117. J.M. Ziman, Electrons and Phonons (Oxford: University Press: 2001).
  118. J.P. Billingsley, Int. J. Solids Struct., 38, Nos. 24–25: 4221 (2001); https://doi.org/10.1016/S0020-7683(00)00286-9.
  119. L.B. Zuev, Int. J. Solids Struct., 42, Nos. 3–4: 943 (2005); https://doi.org/10.1016/j.ijsolstr.2004.08.009.
  120. L.B. Zuev and S.A. Barannikova, Tech. Phys., 65: 741 (2020); https://doi.org/10.1134/S1063784220050266.
  121. L.B. Zuev and S.A. Barannikova, Cryst., 9: 458 (2019); https://doi.org/10.3390/cryst9090458.
  122. H. Umezava, H. Matsumoto, and M. Tackiki, Thermo Field Dynamics and Condensed States (Amsterdam: North-Holland Publ. Comp.: 1982).
  123. E.M. Morozov, L.S. Polack, and Y.B. Fridman, Soviet Physics–Doklady, 156: 537 (1964).
  124. B. Steverding, Mater. Sci. Eng., 9: 185 (1972).
  125. S.N. Zhurkov, Phys. Sol. Stat., 25: 1997 (1983).
  126. J.J. Gilman, J. Appl. Phys., 39, No. 13: 6086 (1968); https://doi.org/10.1063/1.1656120.
  127. T. Oku and J.M. Galligan, Phys. Rev. Lett., 22, No. 12: 596 (1969); https://doi.org/10.1103/PhysRevLett.22.596.
  128. B.V. Petukhov and V.L. Pokrovskii, JETP, 63: 634 (1972).
  129. E. Nelson, Dynamical Theories of Brownian Motion (Princeton University Press: 1967).
  130. P.A.M. Dirac, Directions in Physics (New York: John Wiley and Sons: 1978).
  131. Y. Imry, Introduction to Mesoscopic Physics (Oxford: University Press: 2002).
  132. E. Scerri, The Periodic Table: Its Story and Its Significance (Oxford: University Press: 2007).
  133. A.P. Cracknell and K.G. Wong, The Fermi Surface (Oxford: Clarendon Press: 1973).
  134. W. Hume-Rothery, Elements of Structural Metallurgy (London: Inst. Metals: 1961).
  135. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Elsevier: 1977); https://doi.org/10.1016/C2013-0-02793-4.
  136. G. Grimwall, B. Magyari-Köpe, V. Ozoliņŝ, and K.A. Persson, Rev. Mod. Phys., 84, No. 2: 945 (2012); https://doi.org/10.1103/RevModPhys.84.945.
  137. H. Conrad, Mater. Sci. Eng. A, 287, No. 2: 276 (2000); https://doi.org/10.1016/S0921-5093(00)00786-3.
  138. M.-J. Kim, K. Lee, K.H. Oh, I.-S. Choi, H.-H. Yu, S.-T. Hong, and H.N. Han, Scr. Mater., 75: 58 (2014); https://doi.org/10.1016/j.scriptamat.2013.11.019.
  139. L.B. Zuev and S.A. Barannikova, Tech. Phys. Lett., 45: 721 (2019); https://doi.org/10.1134/S1063785019070319.
  140. A.A. Shibkov, M.F. Gassanov, A.A. Denisov, A.E. Zolotov and B.I. Ivolgin, Tech. Phys., 62: 652 (2017); https://doi.org/10.1134/S1063784217040260.