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New representations concerning plasticity physics in crystals are discussed. The 
model of plastic flow is suggested, which can describe its main regularities. With 
the use of the experimental investigation, it is shown that the plastic flow localiza-
tion plays the role in the evolution of plastic deformation. Obtained data are ex-
plained with the application of the principles of nonequilibrium-systems’ theory. 
The quasi-particle is introduced for the description of plasticity phenomenon. It is 
established the relation between plasticity characteristics of metals and their posi-
tion in Periodic table of the elements. A new model is elaborated to address localized 
plastic-flow evolution in solids. The basic assumption of the proposed model is that 
the elementary plasticity acts evolving in the deforming of medium would generate 
acoustic emission pulses, which interact with the plasticity carriers and initiate new 
elementary shears. As found experimentally, the macrolocalization of plastic flow 
involves a variety of autowave processes. To address the phenomenon of localized 
plastic-flow autowaves, a new quasi-particle called ‘autolocalizon’ is introduced; the 
criterion of validity of the concept is assessed.
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1. introduction: Problems of Plasticity

The simplest analysis of numerous works devoted to elucidation of the 
nature of plastic deformation immediately shows that we are dealings 
with a very complex problem. There have been ample proofs of this 
view, but it is enough to recall only one of them. Everybody knows that 
the principles of quantum mechanics had been developed within twenty 
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years after their first mentioning by Planck in 1900 [1]. However, in-
vestigations of various aspects of plasticity phenomenon used in tech-
nology for about five millennia and studied carefully for no less than 
two centuries have not resulted in the development of a consistent plas-
ticity theory. 

The complexity of this problem is primarily due to its multilateral 
character [2, 3]. It is difficult to take into account that the plastically 
deforming medium changes its structure and mechanical properties dur-
ing the deformation process. These changes encompass space scales from 
crystal lattice to macroscopic volume. The phase composition of an alloy 
may also change during plastic flow. 

This problem is of interest for solid-state physics in general because 
plastic flow is a complex response of the deforming medium on external 
mechanical stresses. For understanding and correct description of this 
response, fundamental principles of mechanics, crystallography, ther-
modynamics, quantum mechanics, hydrodynamics, materials science, 
and other scientific branches have to be used. 

Why does plasticity physics remain enigmatic at present, almost 
200-year-old history of scientific research? The key problem is to recon-
cile two opposite traditional approaches to plasticity. First of this is the 
approach of mechanics. It is characterized by a variety of employed mac-
roscale models (e.g., see [2, 3]), often very simplified. Characteristic 
scale of studying objects is of about 0.1–1 m in this case. The models 
quite often have only a pragmatic substantiation and are focused on 
solving particular problems of plastic deformation. Within the frame-
work of these approaches, narrow practical aims can be achieved, obvi-
ously insufficient for understanding of the nature of plasticity. 

Physical approaches to the plasticity [4–6] are mostly based on elec-
tron microscopic studies of small volumes in a deformed crystal [7]. In 
this case, typical scale of objects is about 10−6 m. Microstructural data 
obtained in these experiments are extrapolated without doubt, as usual, 
to a macroscopic volume. Similar procedure is not always well substanti-
ated, and no agreement of scales has been achieved. Nevertheless, it is 
importantly that the microscopic aspect of the problem has been studied 
much better than macroscopic one [4–10].

Even taken together, these approaches have not yet led to a com-
plete understanding of the problem. Amazing difference in scales hin-
ders the progress. Results obtained to date only set limits for the me-
chanical and physical approaches. This situation is a challenge to a large 
number of researchers. This suggests that today physics of plasticity is 
open to new ideas and approaches. Recent approaches to a solution of 
the plasticity problem are aimed to reconcile the micro- and macroscop-
ic models of a description of plastic flow. The new point of view on the 
plasticity is that microscopic interactions of defects described suffi-
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ciently exactly can spontaneously generate some macroscopic features 
(structures). The principal ideas of this approach and their experimental 
confirmations are discussed in this work.

2. Plastic Flow Localization: Qualitative Analysis

The remarkable advance in the plasticity physics began when it was rea-
lised that this phenomenon is the part of a general problem devoted to 
the behaviour of a matter in the condition far from the equilibrium. 
Similar view does its interesting for other fields of science, since plastic 
flow is a response of an open nonequilibrium medium on external impact 
that can be studied comparatively easily. 

2.1. Plastic Deformation and Synergetics

The decisive step was undertaken in 1987 when Seeger and Frank [11] 
have proposed to consider plastic flow as a process of structurization. 
They have declared as follow, ‘The use of thermodynamics of irreversible 
processes in open systems to a description of structurization during plas-
tic deformation of crystal materials is quite promising on qualitative 
level’. This statement opened the way to using of synergetic methods in 
plasticity physics [12–15]. The attractiveness of this idea has been ex-
plained by the well-known progress in understanding of the nature of 
functioning of alive organisms [16–18] provided by this science. 

For this aim, it is natural to begin successive analysis of the struc-
turization by plastic flow from very important conclusion of the author 
[19]: ‘Structurization in an open nonlinear medium is associated with 
the effect of localization’. It is very important to understand the physi-
cal basis of developing synergetic approach to the problem in progress. 
The use of synergetic principles in plasticity physics requires a more 
complete than usually description of a deforming medium taking into 
account such its properties as follow:

• openness providing energy inflow from the testing machine to the 
sample [20];

• nonlinearity [21] on the macroscopic level in the form of the 
strain–stress curve σ(ε) and on the dislocation level in the complex char-
acter of the strain–stress interaction during deformation [4–6];

• inhomogeneity due to the presence of crystal defects, internal 
stresses, and other deviations from ideal crystal structure that can lead 
to self-organization of the structure according to synergetics principles 
[9–11];

• activity of the deforming medium determined by the presence in a 
media of potential energy sources (elastic stress concentrators) distrib-
uted over the volume [5, 18], which can relax during deformation, gen-
erating lattice defects; 
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• irreversibility of plastic flow, i.e. impossibility of the initial struc-
ture restoration after removal of loading because of lattice defect gen-
eration [22]. 

These considerations transfer the deforming media into the class of 
objects whose properties and dynamics should be described with the help 
of the thermodynamic theory of nonequilibrium systems (synergetics) 
[12–15]. Authors of the monography [13] have declared directly, ‘It is 
impossible to investigate so important and widespread mechanical phe-
nomena as plasticity and yielding on purely mechanical basis; instead, 
they should be considered as a part of the general subject area of nonlin-
ear dynamic systems operating far from equilibrium’. 

2.2. A Hypothesis about Plastic Deformation Localization

This idea is applicable to plastic deformation during which initially ho-
mogeneous medium is spontaneously separated into alternating deform-
ing and nondeforming nuclei whose boundaries can be move. Deforma-
tion starts from initiation of the Lüders band [22] on the initial stage of 
plastic flow and ends by formation of a failure neck directly before a 
failure. It is reasonable to assume that plastic flow at intermediate 
stages is localized also macroscopically, and the lack of data is caused 
by disadvantages of experimental procedures used to record a plastic flow. 

These considerations have allowed us to hypothesize that macro-
scopic localization is a general feature of plastic deformation process 
accompanying it from elastoplastic transition to failure [23]. Then, the 
process is characterized shapes of localized plasticity nuclei, rate and 
character of their motion. Thus, a deformation structure forms in the 
sense prescribed in [11]; one can suppose that correct explanation of the 
nature of plasticity is impossible without its analysis. 

2.3. Pattern of Plastic Deformation Localization 

The hypothesis above has been strongly supported by the results of nu-
merous studies of plastic deformation features in different materials 
deforming with the help of different microscopic (dislocation) mecha-
nisms. To observe the distribution of localization nuclei on the deform-
ing sample surface, the method combining mechanical tests with double-
exposure speckle photography adapted for plastic deformation investi-
gations was used [24, 25]. This allowed the displacement vector field 
r (x, y) arising on the flat-sample surface to be reconstructed for step-by-
step strain increase by δ ε ≈ 10–3 at any stage of the process. Besides, all 
the components of plastic distortion tensor
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can be also calculated. Fig. 1, a–d shows the dependences of the plastic 
strain tensor component, εxx, on co-ordinates, x and y in the samples. 
These dependences are referred as the localized strain pattern. The dis-
tribution of the tensor components can be analysed using the X–t dia-
grams, i.e. dependences of the strain nucleus co-ordinates, X, on time t. 
Such diagrams allow to measure the spatial, λ, and temporal, T, periods 
of the process, as it is shown in Fig. 2. Then the wave number k = 2π/λ, 
the frequency ω = ωaw = 2π/T, and the motion rate of the deformation 
nucleus Vaw = λ/T = ω/k are calculated. 

Fig. 1. The examples of localized plastic flow patterns in flat specimens: (a) yield 
plateau in Fe–12 wt.% Mn alloy single crystal; (b) linear work hardening stage in 
polycrystalline Al; (c) parabolic work hardening stage in Cu single crystal; (d) pre-
failure stage in polycrystalline Fe–3 wt.% Si [25]

Fig. 2. The example 
of X–t diagram ant 
its using for the 
measurement of spa-
tial, λ, and temporal, 
T, periods of the lo-
calized plastic flow 
autowave [139]
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To elucidate the meaning of the pattern, one can represent the strain 
increment δ ε between two exposures in form
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where N is the number of localized active flow nuclei with size l in the 
pattern, εxx

(max) is the amplitude of the plastic strain tensor component εxx 
in such nuclei, 〈εxxl〉 is the average elongation within the nucleus, and 
L > Nl is the sample length. Numerical verification of Eq. (2) showed 
that the total strain is actually the sum of strains in active nuclei, i.e. 
the events in localization nuclei are more essential than the events in 
the intermediate zones. 

A number of authors have independently confirmed the existence of 
the localized plastic flow pattern (e.g., see the works [26–31]). The used 
various experimental techniques were based on the laser interferometry, 
methods of correlation of digital surface images, and the thermovision 
systems. These investigations have presented the abundant proofs of the 
correctness of the hypothesis about the universal character of plastic 
flow localization formulated above.

2.4. Plastic Flow Viewed as Spatial–Temporal Process

After proving the existence of localized plastic flow patterns and deter-
mining their temporal dynamics, it became clear that plastic flow is a 
spatiotemporal process. Immediately, a very important question arose: 
Can this process be reduced to any already well-known wave process or 
are we dealings with an unknown regularity of the plasticity phenomenon? 

This question arose because, e.g., the Kolsky stress waves are well 
known. They have been studied theoretically and experimentally in  
detail in [32, 33]. One can suggest that the Kolsky waves are similar  
to the discussed deformation processes. However, there are at least  
three arguments against this. First, the velocity of the Kolsky waves is 
10 ≤ VKol ≈ (θ/ρ0)

1/2 ≤ 102 m/s (here, θ = dσ/dε is the work hardening 
coefficient and ρ0 is the material density) [33]. At the same time, the 
motion velocity of localized plasticity nuclei is 10–5 ≤ Vaw ≤ 10–4 m/s [25]. 
Evidently, the ratio VKol/Vaw ≈ 105–107 excluded any possibility to reduce 
the above-discussed localization processes to the Kolsky stress waves. In 
addition, the velocity Vaw cannot be expressed in terms of the material 
characteristics.

The second argument is the significant difference between the mech-
anisms of initiation of waves and processes in question. For example, to 
excite a wave process, an external impact is necessary, whereas a found 
process is engendered by internal interactions of elements of the active 
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medium [34]. From representations about the mechanical method of 
material testing, it is clear that loading is quasi-static in character, so 
that an external impact is not possible.

Finally, the third argument in favour of the autowave serves lim-
ited forms of the stress waves reduced actually only to propagation of 
solitary fronts [33]. At the same time, the autowaves form different 
modes [25] corresponding to different experimental patterns of local-
ized plasticity.

Taken together, the arguments presented above allow us to declare 
that the examined spatiotemporal deformation processes serve as evi-
dence for the existence of a new mechanism of plastic flow. Hähner [35] 
discussing their nature demonstrated that dislocation responses on the 
Lüders front are analogous to those observed for the Kolsky stress 
waves. Simultaneously, in [36] we demonstrated an alternative explana-
tion based on the autowave processes [34] arising in active media. Sub-
sequent investigations demonstrated that the autowave theory is prefer-
able for explanation of plasticity features.

Here, it would like to emphasize that the self-organization processes 
were previously addressed in terms of dissipative structures or pseudo-
waves [12, 13] or else as autowaves [16]. The latter term needs accurate 
definition. It is well known [16, 34] that the autowaves are solutions to 
parabolic differential equations in the partial derivatives, i.e.,  ·y = ϕ (x, y) + 
+ Dy''. Similar equations can be produced by adding the nonlinear func-
tion ϕ (x, y) to the right-side part of the diffusion equations  ·y = Dy''. By 
contrast, hyperbolic differential wave equations of the type  ··y = c2y'' de-
scribe harmonic waves y ∝ cos (ωt − kx). These waves travel in elastic 
solids; their rate c2 ≈ G/ρ0 [37] is determined by elastic modulus, G, and 
the material density, ρ0.

It is significantly that autowave equations having a first (odd) time 
derivative, ·y, describe irreversible processes, while wave equations hav-
ing a second (even) time derivative, ··y, cannot be used for the same pur-
pose by virtue of the fact that they have temporal symmetry. Besides, 
the autowave processes can generate the macroscopic scale due to inter-
action of microscopic objects. Thus, it is not difficult to appreciate the 
principal difference between waves and autowaves.

2.5. Pattern; Autowaves; Work Hardening Stages

The correctness of this point of view on the plasticity mechanics was 
con firmed in Refs. [38–41]. It is important to take into account the geo-
metric meaning of the experimental data: the observable localized plas-
ticity patterns are the cross sections of the volume autowave by the 
sample surface.

To understand the nature of the phenomenon, as a first step in ac-
complishing this goal, we compare the patterns of localized plasticity on 
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different stages of work hardening [5, 6]. These can be seen on the flow 
curve σ (ε) or on the dependences θ (ε) [6, 42]. It turns out that there is 
a one-to-one correspondence between the work hardening stages and  
patterns of localization. The X–t diagrams in Fig. 3, a–d illustrate  
this clearly. 

Thus, at the yield plateau stage with σ ≈ const and θ ≈ 0, the local-
ized plasticity pattern depicts expansion of the single nucleus (Fig. 3, a) 
known as the Lüders band [22]. On its front, the elastic medium is trans-
formed into the plastically deforming the same, changing structure and 
work hardening law. 

At a linear work hardening stage when σ ∝ ε and θ ≈ const, the hard-
ening is determined by the dislocation interaction and multiplication on 
dislocation forest [5, 42]. At this stage, the strain pattern is a set of 
strain nuclei moving equidistantly with a constant rate. In this case, the 
strain can be repeatedly excited in the same volumes of the material 
with time intervals determined by the properties and the state of the 
medium (Fig. 3, b). 

At a parabolic work hardening stage (σ ∝ ε1/2 and θ ∝ ε–1/2), the proc-
ess is governed by cross-slip of screw dislocation [4, 42]. A system of 

Fig. 3. The correspondence rule. X–t diagrams for (a) yield plateau, (b) linear work 
hardening stage, (c) parabolic work hardening stage, and (d) prefailure stage [25]
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stationary nuclei of plasticity localization (Fig. 3, c) is observed in the 
sample in this case. 

At a prefailure stage when σ ∝ εn and 1/2 > n ≥ 0, the strain nuclei 
move, but the character of the process is more complicated in compari-
son with the stage of linear work hardening. Here, the time depend-
ences of positions of the localized strain nuclei X(t) are linear and form 
bunches of straight lines. This is the case at stresses σp < σ < σB, where 
σp is the stress of termination of the parabolic work hardening stage. 
The velocities of the nuclei in this stage depend linearly on the coordi-
nates of their origin place x͡
 Vaw (x͡) = α0 + α ͡x; (3)

here, α0 and α are constants. Corresponding X–t diagram is shown in 
Fig. 3, d.

A comparison of the well-known microscopic mechanisms of work 
hardening at each stage [4–7] with the characteristics of the autowave 
processes described in [34, 43, 44] allows us to juxtapose a certain auto-
wave mode to each pattern [34] and to formulate the corresponden -ce rule:

• at a yield plateau stage, the front of localized deformation can be 
considered as a switching autowave of the localized plasticity [34]; 

• at a linear work hardening stage, the phase autowave of the local-
ized plasticity is formed [34], for which the condition ωt − kx = const is 
fulfilled; the phase autowave is characterized by the length and oscilla-
tion frequency; 

• at a parabolic work hardening stage, the stationary dissipative 
structure arises [34] arises; in this case the spatial period of the localiza-
tion nuclei is about the same as the autowave length at the stage of 
linear work hardening;

• at a prefailure stage, it is observed the collapse of the autowave 
process of localization [45] before the failure neck formation. 

Fig. 4. Successive change 
of autowave characteris-
tics in the course of plastic 
flow of polycrystalline Fe–
 3 wt.% Si alloy [109]
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The correctness of the correspondence rule is illustrated by Fig. 4 
on the example of the deformation of polycrystalline Fe–3 wt.% Si al-
loy. However, it is necessary to emphasize that the Correspondence rule 
is fulfilled independently on the investigated material nature and struc-
ture [25]. As was found, there are four major autowave modes, which 
can arise in the course of plastic flow. They unambiguously correspond 
to the work hardening stages, and the plastic flow can be considered as 
the sequence of the autowave modes strongly determined by the acting 
laws of work hardening. This observation led to the following interest-
ing consequence. As well known, significant alterations of autowave 
modes can be observed and modelled in chemical and biological systems 
too [34]. However, autowave generation in similar systems requires spe-
cial generators for each mode. Indeed, a metal sample of simple shape in 
tension with a constant velocity at a constant temperature can spontane-
ously generate autowaves of different types caused by transformations 
of defect structure. It is conceivable that the deforming sample can be 
considered as a universal generator of different autowave modes [46].

2.6. Experimental Data  
on the Phase Autowaves of Localized Plastic Flow 

The phase autowaves of the localized plasticity are most convenient and 
interesting for he detailed analysis since their lengths and propagation 
velocities have been measured sufficiently precisely. Empirical features 
have been established for them, including the dependence of the propaga-
tion velocity on the work hardening coefficient Vaw(θ), the dispersion law 
ω (k), and the dependence of the length of autowave on the grain size λ  (δ).

At the easy slip in single crystals and linear work hardening stages, 
this dependence is shown in Fig. 5, a. Obviously,

 
( � 1

aw 0V V −Ξ
θ = + ∝ θ

θ
, (4)

where V0 and Ξ are constants, different for easy glide and linear work 
hardening stages. The correlation coefficients between Vaw and θ–1 at 
these stages are ≈0.7 [47]. The proportionality Vaw ∝ θ–1 confirms some 
more the difference between the localized plasticity autowaves and the 
Kolsky waves [32], for which VKol ∝ θ1/2.

As shown experimentally [48, 49], the dispersion law for localized 
plastic flow autowaves has the quadratic form (Fig. 5, b) 

 ω = ωaw = ω (k) = ω0 + α (k – k0)
2, (5)

where a, k0, and ω0 are constants depending on the material. By substi-

tutions 0ω = ω ω  and 0 0k k k= + α ω , where ω  and k  are dimension-
less frequency and wave number, Eq. (5) is reduced to its canonical form 

21 kω = +  . It is of importance that similar dispersion law is typical for 
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many nonlinear processes developing in the non-equilibrium systems of 
different kinds [21, 34].

There is a gap in the dependence ω (k) at 0 ≤ ω < ω0 ≈ 10–2 Hz (see 
Fig. 5, b). Therefore, the condition ћω0 << kBT is fulfilled at any tem-
perature, and spontaneous localization of the plastic flow can be excited 
in all these cases. Thus, e.g., the jump- like strain associated with local-
ization was observed at T ≤ 1 K [50]. Probably, the plastic strain local-
ization autowaves can be absent only because of geometrical restrictions 
for small sample sizes [12]. 

This dependence was established for polycrystalline Al [51] with 
grain sizes 5  · 10–6 ≤ δ ≤ 5  · 10–3 m that were prepared by recrystallization 
at 853 K after deformation. The dependence λ (δ) is shown in Fig. 6. 
When choosing the form of the func-
tion λ (δ), it was taken into account 
that the localized strain wavelength 
increased with elongation of the shear 
lines. If the grain size becomes close 
to the sample size, the rate of growth 
slowed down, because the length of 
the slip line cannot exceed the grain 
size. Hence, it follows that dλ/dδ = 
= aλ − a*λ2, where a > 0 and a* > 0 are 
dimensional constants, and the term 

* 2a λ  takes into account slowing down 
of the λ increment at large δ. Integra-
tion of this equation yields the Ver-

Fig. 6. Length of autowave as a  
function of grain size (polycrystal-
line Al) [51]

Fig. 5. Characteristics of phase autowaves: a — the rate of localized plastic flow 
autowaves as a function of work hardening coefficient for linear work hardening 
(upper curve) and easy glide (lower curve) [49]; b — dispersion law for localized 
plastic flow autowaves [48]
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hulst (logistic) function [12]:

 

λ
λ = λ +

+ − δ

*

0 1 exp ( )C a
, (6)

where C ≈ 2.25 and the constants λ0 ≈ 4 · 10–3 m, a = 1.4 · 103 m–1, 
a* = 8.8 · 104 m–2, and λ* = a/a* ≈ 1.6 · 10–3 m were determined experi-
mentally. 

3. Plastic Flow Localization: Quantitative Analysis

As shown above, the autowave processes are described by differential 
equations of type ·y = ϕ (x, y) + Dy'' [34, 43, 52]. An explicit form of the 
function ϕ (x, y) is determined by physical reasons either if the mecha-
nism of the phenomenon is known or is written in the form of cubic 
nonlinearity. Methods of solving these equations [54] have been success-
fully used to analyse the dynamics of structures in chemical and bio-
logical objects. 

However, actual models of autowave processes are based on a com-
petition of the autocatalytic (activator) and damping (inhibitor) factors 
that govern the kinetics of the corresponding process [13, 34, 53]. For 
this reason, we need two equations to describe adequately the plasticity 
phenomena. This problem is simple, e.g., for chemical kinetics: one of the 
equations describes the activator concentration and another describes 
the inhibitor concentration. In systems of other nature, the choice of 
the governing factors is a more complicated problem.

3.1. Autowave Equations of Plastic Flow

The complexity of physical aspects of the plasticity problem consists in 
optimal choice of variables suitable for a description of plastic flow pro-
cesses. For a localized plastic flow, it was suggested to consider the 
plastic strain ε as an activator and the elastic stress σ as an inhibitor of 
the process [25]. The main argument in favour of such choice is as fol-
lows. As we know [2, 55], to describe the plastic deformation of a solid, 
the stress tensor is subdivided into the deviator stress tensor and spher-
ical the same. In this case, the deviator stress tensor is responsible for 
plastic change of the form, and the spherical tensor creates hydrostatic 
compression or tension that prevents the plastic strain according to the 
law of elasticity of volume strain [2]. The choice of the plastic strain 
and elastic stress as control parameters is convenient because it allows 
experimental determination of σ and ε from the diagram σ(ε) and spatial 
separation of elastically stressed and plastically strained zones defining 
the multiscale character of the process [56].

The evidences in favour of such choice are adiabatic cooling of the 
sample in tension and local heat liberation in shear planes [10]. These 
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processes are opposite. Authors [57] hold a similar point of view on the 
nature of the activator and inhibitor of plastic deformation. Taking 
into account this choice, the equations for the strain (activator) and 
stress (inhibitor) can be written by analogy with [34, 53] (they are actu-
ally postulated) in the form of the system of equations

 

( ) ,                                      (7)

( ) ,                                    (8)

f D

g D
εε

σσ

ccε = ε + ε­
® ccσ = σ + σ¯





where the first equation describes the kinetic strain changes (activator), 
and the second equation describes the stress (inhibitor). Double subscripts 
of the coefficients Dεε and Dσσ in Eqs. (7) and (8) are explained below. 

The nonlinear functions f (ε) and g (σ) describe the relaxation events 
on the strain fronts in nonlinear deforming medium [5, 58]. They char-
acterize the redistribution of strains and stresses among neighbouring 
microvolumes near the relaxing stress concentrator and are due to con-
tinuous motion of the strain front. 

The diffusion terms Dεεε'' and Dσσσ'' determine the macroscale redis-
tribution of the strain and stress. Thus, one can consider that the right 
sides of Eqs. (7) and (8) contain hydrodynamic (f (ε) and g (σ)) and dif-
fusion-like (Dεεε'' and Dσσσ'') components [59]. The roles of the hydrody-
namic and diffusion-like components in the strain dynamic develop-
ment are different essentially. 

As follows from the theory of parabolic differential equations [43], 
the interaction propagation rate in medium is infinite, i.e., V(inter) → ∞. 
Such condition is physically unrealizable and must be replaced by the 
condition V (inter) ≈ Vt that limits the velocity of signal transfer in the 
medium by the sound velocity, Vt. On this reason, the time of emer-
gence of new plasticity nucleus is τ ≥ λ/Vt. This one gives rise to the 
idea that the acoustic properties of the medium can play an important 
role in the initiation of new dislocation shears at a macroscopic distance 
from the existing plasticity nucleus [60]. We note also that the first-
order time derivatives in Eqs. (7) and (8) emphasize the irreversible, in 
principle, character of plastic flow. Thus, Eqs. (7) and (8) take into ac-
count nonlinearity and activity of the deforming medium as well as the 
openness of the system and the irreversibility of the plastic flow.

Equations (7) and (8) have to be derived from the master equations 
of mechanics. Thus, e.g., Eq. (7) follows from the condition of continu-
ity of functions describing deformation kinetics [61]. In this case,

 ( �,Dεεε = ∇ ⋅ ∇ε

 
(9)

where Dεε∇ε is the strain flow in the field of its gradient. If Dεε = Dεε (x), 
then

 ( )D D f Dεε εε εεc c cc ccε = ε ⋅ + ε = ε + ε , 
(10)

(7)

(8)
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where ( , )f Dεεc cε σ = ε ⋅  is a nonlinear function of the strain and stress. It 
is clear that Eq. (10) is equivalent to Eq. (7) postulated above.

In its turn, Eq. (8) follows from the Euler equation [62],

 
,ik

i
k

v
t x

∂3∂
ρ = −

∂ ∂  
(11)

where visik ik i k ik i kp v v v v3 = δ + ρ − σ = σ − ρ  is the momentum flow den-
sity tensor, δik is the unit tensor, p is the pressure, and vi and vk are the 
components of the flow velocity. The stress tensor δik = −pδik + σvis is the 
sum of elastic, σel = − pδik, and viscous, σvis stress components, that is, 
σ  = σel + σvis, and ·σ  = ·σel + ·σvis. Here, ·σel ≡ g (σ, ε) = −B–1Mρdb

2σ = 
= −MρmbVdisl ∝ Vdisl, where M is the elastic modulus of the sample, 
B ≈ 10–5–10–4 Pa ⋅ s is the dislocation drag coefficient, and  Vdisl  = (b/B)
σ is the dislocation rate [50, 63]. 

The viscous stresses depend on the elastic wave velocity in the me-
dium and its dynamic viscosity η: σvis = η∇Vt; here, Vt ≈ Vt0

 + βσ [60], 
Vt0 — propagation velocity of the transverse elastic waves at σ = 0 and 
β  = const. In this case, ∂σvis/∂t = Vt∇ · (∇Vt) = ηVt∂2Vt/∂x2, and the  
re laxation rate of viscous stress is ∂σvis/∂t = ηVt∂2Vt/∂x2 = ηβVt∂2σ/∂x2, 
so that

 
2 2( )t g D xσσ∂σ ∂ = σ + ∂ σ ∂ , (12)

where Dσσ = ηβVt is the transfer coefficient. Thus, the terms el ( )gσ = σ  

and 2 2
vis D xσσσ = ∂ σ ∂  in Eq. (12) determine the relaxation rates of the 

elastic and viscous stresses, respectively, and Eqs. (12) and (8) are 
equivalent.

3.2. Analysis of the Autowave Plasticity Equations

To estimate the possibilities of Eqs. (7) and (8) for a description of local-
ized plasticity, we now consider the explicit form of the nonlinear func-
tions: 

 
( )f

ε

ε σ
ε = − +

θ η
 (13)

and 

 

*( )
( ) yg

σ ε

σ − σ − σ σε
σ = − +

θ θ
, (14)

where η is the viscosity of the medium, θε and θσ << θε are the relaxation 
times of the strain and elastic stresses, and σy is the yield strength. 
Equation (13) is the Maxwell equation for a viscoelastic medium. The 
first term in Eq. (14) describes the stress relaxation to the level σ*, and 
the second term describes the nonlinear feedback effects. 
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To analyse qualitatively Eqs. (13) and (14), we take advantage the 
method isoclinic lines for what equate to zero the left-side sides of the 
equations. Then,

 
G

σ

η
σ = ε = ε

θ
 (15)

and

 

0

1 ( )
y

σ ε

σ + σ
σ =

− θ θ ε .
 (16)

The 0-isoclinic lines so obtained are shown in Fig. 7, a. Their analy-
sis consists of the search of intersection points for 0-isoclinic lines. The 
N-shaped form and the position of function (16) are determined by con-
stants entering into it and by the strain ε. For small stresses, after 
achievement of the special point Ω, any small deviation from the equi-
librium leads to the jump-like transition Ω → À to the stable isoclinic 
line branch  ·σ = 0. At low stresses, the point makes the cycle À → B → 
→ Ñ → Ω, and the system returns to the equilibrium again. At high 
stresses (the upper curve), after disruption of the equilibrium Ω → À, 
the depicting point no longer returns to the equilibrium position and 
moves along the closed trajectory À → B → Ñ → D → E → B. The first 
case corresponds to the propagation of the switching autowave (the 
Lüders front). The repetition of cycles in the second case indicates the 
formation of the phase autowave.

The function f(ε) can also be defined in another way. For example, 
for the thermal activation character of the relaxation process, this de-

Fig. 7. 0-isoclines corresponding to Eqs. (15) and (16) (à) as well as (18) and (15)  
(b) [41]
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pendence can be logarithmic in character, which follows from the kinet-
ics of the thermally activated plastic deformation [64]. Then

 
( ) ln

A
f ϑ

σ σ

σ − σ
ε = ε +

θ θ
, (17)

where the constant A is determined by the mechanism of plastic strain 
and σϑ is the stress function. The equation for the 0-isoclinic line in this 
case has the form 

 
lnAϑσ = σ + ε  (18)

shown in Fig. 7, b. The subsequent analysis also demonstrates the change 
in plastic flow modes. At low stresses (curve 1), the depicting point on 
the path Ω1 → A → B → C returns to the equilibrium position. At high 
stresses (curve 2), the depicting point after transition Ω2 → A moves 
along the trajectory B → C → D → E → B that corresponds to the for-
mation of the phase autowave. 

Thus, Eqs. (7), (8), (10), and (12) are applicable for a description of 
the autowave phenomena at the plastic flow. With their use, the exis-
tence of switching and phase localized plasticity autowaves at stages  
of the yield plateau and linear work hardening, respectively, can be  
explained. 

3.3. On the Application of the Autowave Representations

One of the first attempts to use Eq. (7) in physics of lattice defects be-
longs to Donth [65, 66] who explained with its help the contribution of 
dislocation kink motion to the amplitude-dependent internal friction. 
Later on, such ideas were used directly to describe the self-organization 
of dislocation ensembles during plastic deformation. For example, the 
situation with propagation of strain fronts was studied in [67, 68], 
where correct estimation was obtained of the autowave propagation ve-
locity of inhomogeneous plastic shear (the switching autowave) for mo-
tion of the Lüders band. 

In Refs. [69–72], the autowave representations were used to solve 
the problem of the jump-like strain and to analyse the formation of slip 
bands. For these purposes, the authors wrote dynamic equations for 
dislocation ensembles and considered conditions of forming slip bands 
from originally chaotic defect distribution. The complex structure of 
the strain waves propagating in the deforming medium and consisting 
of the head part of soliton type and of the oscillating tail gradually lag-
ging behind the head part during motion was predicted. This effect can 
be considered as one of the mechanisms of autowave generation in de-
forming media. General analysis of the stability problem for a disloca-
tion ensemble demonstrated that dislocation density fluctuations lead to 
the emergence of stress concentrators in a deforming medium.
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Apparently, the mechanisms of self-organization and formation of 
dislocation ensembles were considered most consistent and rigorously in 
[73–76]. Thus, in [74] the relationship between the strength and plastic-
ity was analysed on the examples of work hardening curves for some 
f.c.c. metals and alloys. The analysis was based on the neck formation 
criterion in a sample in tension and on the work hardening curve elated 
to dislocation density in the material with increasing strain degree and 
the influence of structural factors on this dynamics. 

The influence of the Peierls stress on both the stress and the strain 
before the neck formation was studied in Ref. [75] for metals in tension. 
The analysis was based on the dependence of dislocation density on 
strain in the course of the material work hardening and the influence  
of the Peierls stress on this process in terms of the screw dislocation 
annihilation. In Ref. [76], the mechanism of work hardening and dis-
location structure fragmentation in metals subjected to severe plastic 
deformation was explained on the base on the dislocation kinetics  
equations. 

The important attempts to explain the autowave processes of plastic 
flow were undertaken by the authors [77, 78]. To analyse the situation, 
they represented the total local strain of the medium in the form of a 
sum of elastic, irreversible inelastic and reversible inelastic terms. Since 
the inelastic strain is of the localized type, quantities and can be written 
using the order parameters q and p < q, which define the fractions of the 
volume occupied by reversible and irreversible inelastic deformation 
zones, respectively. Variables p (r, t) and q (r, t) characterizing the varia-
tion of the internal structure of the strained material will be hence 
forth treated as the Landau order parameters and are assumed to be 
continuous functions of co-ordinates and time. Clearly, 0 ≤ q ≤ 1 and  
0 ≤ p ≤ 1; for q = 0 and p = 0, the sample experiences only elastic de-
formation, while for q > 0 and p > 0, the sample is under uniform ine-
lastic strain. 

These representations are generalizations of the equations describ-
ing self-organization processes in active media [12, 13] to the case of a 
deformable medium. The change in the state of the medium under plas-
tic deformation is determined by the matched redistribution of elastic 
stresses and the motion of localized plasticity zones emerging at any 
stage of the process. 

Thus, the authors of [77, 78], based on the autowave approach, suc-
ceeded in explaining the transition of the autowave strain modes to the 
plastic flow from the Lüders front to the phase autowave and the qua-
dratic dependence of the autowave dispersion at the stage of linear work 
hardening stage. 

In works [79, 80], it was considered the possibility of self-organiza-
tion of dislocation structures at a plastic flow by the introduction of the 
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hydrodynamic strain flow component, and showed how such process af-
fects the work hardening. They demonstrated that the deformation pro-
cess dynamics obeys the synergetic laws.

4. Generation of Plastic Strain Autowaves: A Model

A role of the strain, ε, and stress, σ, governing the plastic flow, can be 
the following. The autocatalytic factor (strain) acts so that each accom-
plished shear initiates the similar process in the neighbouring volume 
required for accommodation, so that the effective radius of action for 
this parameter is on the order of the shear zone size, l, and its propaga-
tion velocity is commensurable with the dislocation velocity, Vdisl. The 
elastic energy released during each shear is redistributed within the 
volume, causing relative growth of the stress concentration, which 
damps the plastic strain. The radius of action of this factor is commen-
surable with the sample size L >> l, and the propagation velocity is equal 
to that of the elastic waves Vt >> Vdisl. Such relationship for the activat-
ing and inhibiting factors that governs the process is necessary for 
autowave generation [34]. 

4.1. Plastic Flow as a Self-Organization Process  
in a Deforming Medium

Haken [15] was the first who stated, ‘The system is called self-organiz-
ing if it acquires any spatial, time, or functional structure without spe-
cific external impact’. From this point of view, spontaneous stratifica-
tion of the medium during plastic flow into deforming and non-deform-
ing volumes is equivalent to its self-organization that is, ordering 
(structurization). A description of such processes is a main problem of 
synergetics.

Olemskoi and co-authors in [14, 81–83] applied synergetic appara-
tus to a detailed description of problems of condensed state physics, 
including the plastic flow and failure questions. In particular, he first 
succeeded in consideration from these positions the patterns of forma-
tion of crystal defects and autowaves related to the localization of plastic 
flow in the condition of active loading and at the phase transformations. 

In the works [84–91], problems of condensed media structurization 
were analysed, in particular, for the formation of localized plasticity 
autowaves and the nature of hydrodynamic and diffusion-like plastic 
flow modes. The application of these ideas directly to a solution of the 
plasticity problem signalled a new look on the plastic strain as on the 
process of self-organization of defective structure on different scale 
levels. Author [84, 85] successfully used the synergetic approach to de-
scribe the strain nature and the destruction processes based on excita-
tion mechanisms of the crystal lattice. In Refs. [86–91], the authors 
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described the process of plastic strain as a non-equilibrium kinetic tran-
sition leading to plastic flow localization. Within the framework of this 
approach, the deforming material was considered as a system capable of 
generating dissipative structures more efficient in comparison with mo-
tion of single dislocations, in particular, plastic flow autowaves. This is 
in agreement with the results of investigations of dislocation structures 
in a plastic flow. Thus, for example, authors of work [92] established 
and discussed regularities of generation of new dislocation substruc-
tures during deformation and showed that a new structure emerges 
against the background of the old structure and is accompanied by its 
degradation. 

4.2. Autowave Plastic Flow Model

The new approach required the development of a self-organization mod-
el focused on the problem of plasticity of solids. For this aim, the idea 
was used moved by Kadomtsev [45] who considered that ‘During self-
organization of complicated open physical systems, trends may emerge 
toward their stratification into information and dynamic subsystems’. 

This claim is in full agreement with representations about competi-
tion between the autocatalytic and damping factors discussed above, 
and a relationship can be seen of the dynamic and information subsys-
tems with them. Therefore, to develop a model, we define the specificity 
of the information and dynamic subsystems in a deforming medium 
bearing in mind that: 

• the origin of the information and dynamic subsystems should be 
closely related to the processes that control the plastic flow; 

• there should be a mechanism of subsystem interaction of such 
power that events in one subsystem could cause responses in another. 

Total deformation involves the both elastic and plastic components. 
The elastic state at nominal stresses σnom < σy is characterized by the 
presence in the material of a set of dwelling stress concentrators with 
amplitude σc >> σnom randomly distributed over the volume, which is 
typical of an active medium. For σnom > σy, the medium is transformed 
into the plastic state, in which a part of the concentrators remains in 
the dwelling state, and another part relaxes. This is taken into account 
in the two-component plasticity model, the flowchart of which is shown 
in Fig. 8, a. In this case, the dynamic subsystem is formed by a set of 
relaxing concentrators — elementary plastic strain relaxation events. 
Here thermally activated relaxation (destruction) of the concentrator is 
considered as an elementary plastic flow event of dislocation shear, 
twinning, etc. The information subsystem includes a set of elastic pulses 
of acoustic emission generating and absorbing by relaxation events. 

The state of a deforming medium in this model is characterized by 
wandering of acoustic pulses in the system of elastic stress concen- 
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 tra tors. Being superimposed on the elastic concentrator fields, they 
trig ger plastic strain relaxation events. Autowave are generated due to 
interaction of the dynamic and information subsystems provided on the 
one hand, by generation of pulses of acoustic emission in each relax a-
tion event, and on the other hand, by their absorption by dwelling  
concentrators. Thus, either spontaneous or induced relaxation acts  
are observed in the deforming system for the condition σnom < σy; the 
latter activate waiting concentrators again by acoustic emission pul ses 
[93–95]. 

The scenario of plastic flow shown in Fig. 8, b includes the two 
steps. First, transformations in the dynamic subsystem, that is, sponta-
neous or induced plastic shear (transformation of the dwelling concen-
trator into the relaxing one and again into the dwelling one; points A 
and B). After that, transformations in the information subsystem, that 
is, emission of acoustic pulse in the process of concentrator destruction 
(point A) and its absorption by another waiting concentrator (point C). 
Then these acts are repeated.

Thus, two effects, typically studied separately, are combined in the 
two-component model. The first effect is the acoustic emission accompa-
nying the plastic flow events and conventionally used to control the 
material state [93, 96]. The second effect is acoustoplasticity whose 
mechanism, explained in works [94, 95], consists in plasticization of the 
material by imposing of stress oscillations with ultrasonic frequency on 
a deforming material. 

Obviously, the above-described mechanism is possible because of the 
known property of a nonlinear deforming medium to generate harmon-

Fig. 8. Two-component mo del: 
a — flowchart; b — me chanic-
a coustic sche me [38] 
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ics during elastic signal propagation. In this case, the elements of the 
medium can be related with these harmonics [45]. Thus, in particular, 
if the acoustic signal containing the harmonic of a certain frequency is 
generated in the process of destruction of the stress concentrator A, 
such harmonic can be absorbed by the accepting concentrator C of simi-
lar structure and spectrum with the corresponding increase of the im-
pact. It is possible to add that the generation of harmonics is a conse-
quence of nonlinearity of deforming medium.

4.3. Quantitative Estimations of the Model 

Let us compare the waiting times of thermally activated relaxation 
events [64] in the absence of acoustic pulse (spontaneous relaxation)

 1 0
sp exp ,D

B

U

k T
− § ·− γσ

ϑ ≈ ω ¨ ¸
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 (19)

and after pulse imposition (induced relaxation)
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In Eqs. (19) and (20), ωD is the Debye frequency, U0 is the potential 
barrier to be overcome during the relaxation event, γ ≈ b2l ≈ 104b3 is the 
activation volume of this event [64], l is the size of the shear zone, kB 
is the Boltzmann constant, Ò is temperature, and Å is the elastic modu-
lus. In calculations by formulas (19) and (20), we set that the  
activation enthalpy of the destruction process is U0 − γσ ≈ 0.5 eV, and 
the acoustic pulse with elastic strain amplitude εac decreases this para-
meter by δU0 ≈ γεacE ≈ 0.1 eV. Calculation for kBT ≈ 1/40 eV yields  
ϑsp ≈ 5  · 10–5 s and ϑind ≈ 9  · 10–7 s << ϑsp. Such estimations explain the 
possibility of plastic flow activation under the action of acoustic pulses 
and confirm the correctness of the model.

Thus, Eqs. (19) and (20) demonstrate the possibility of induced de-
cay of stress concentrator fields. It seems likely that the rate of local-
ized plasticity autowave is determined by the time of plasticity nucleus 
growth from a nucleus that can be identified with the intergrowth of 
the Lüders band through the sample (τL ≈ 10 s >> ϑsp, Fig. 9). 

The principal problem in explanation of the autowave nature irre-
spective of the system nature is matching of the macroscopic autowave 
scale with the microscale of internal interactions. In the context of the 
model being developed, it can be explained as follows. Let a shear emits 
a pulse of transverse acoustic waves with frequency ωm ≈ 106 Hz corre-
sponding to a maximum of the spectrum [93]. As shown in [97], having 
passed through an elastically stressed region, such pulse is split into 
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two orthogonally polarized acoustic waves propagating with velocities v1  
and v2 ≠ v1. The difference between their wavelengths 
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 (21)

reaches ∼10–4 m provided that the difference between the principal  
normal stresses σ2 ≈ σ2 ≈ 102 MPa in Eq. (21), the material density 
ρ0 ≈ 5 · 103 kg/m3, and the sound velocity Vt ≈ 103 m/s. The probability 
of activation of a new shear increases when the maxima of σ2 coincide 
in both waves, that is, when the elastic energy is maximal. This corre-
sponds to the condition L2/δL ≈ λ ≈ 10–2 m, which is close to the obser-
vable autowave length and explains the origin of the plasticity nuclei at 
the distance ∼λ from the existing strain front at the expense of the proc-
ess of acoustic initiation of strain. 

Another variant of estimation is based on an analysis of acoustic 
signal propagation through a fragment with inhomogeneous density of 
dislocations of the type of the existing plastic flow nucleus (Fig. 10, a). 
If the dislocation density in the fragment decreases from the nucleus 
toward the periphery, the internal stresses σi ≈ Gbρd

1/2 [6] are inhomoge-
neously distributed. Such fragment can be considered as an acoustic 
lens with diameter C. Together with the dependence Vt ∝ σi [60], this 
causes rotation of the plane wave front À–À passing in this region 
through a small angle α. 

The waves from neighbouring regions playing the role of lenses are 
focused onto the symmetry axis where the level of the elastic stress in-
creases, thereby increasing the probability of relaxation plasticity 
events. This initiates the formation of a new strain nucleus at the  
distance ∼λ from the initial nucleus. Simple geometric calculation the 

Fig. 9. Increase of the Lüders band across deforming sample. Time between frames 
is 7 s [25]
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details of which and the designations are explained in Fig. 10, a de-
monstrates that 
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. (22)

It is convenient to estimate the effect quantitatively for polycrystal-
line Al in which the velocity is Vt ≈ 3 · 103 m/s, and its experimentally 
determined range of variation in the plastic strain interval correspond-
ing to the parabolic work hardening stage is ∆Vt ≤ 10 m/s [60]. For the 
fragment size δ ≈ 10–7 m and the ratio C/2δ ≈ 10, we obtain λ ≈ 10–2 m, 
which is close to the observable distance between the localized strain 
nuclei (autowave strain length). Since λ >> C > b, we can consider that 
Eq. (22) relates the microscale of the dislocation substructures and the 
macroscale of the autowave deformation.

A simpler variant of such estimation is possible. Since the velocity 
of elastic waves depends on the strain and the dislocations are conven-
tionally distributed inhomogeneously. The inhomogeneity zone with size 
ld can be considered as an acoustic lens with curvature radius R ≈ ld. Its 
focal length ξ (Fig. 10, b) is [49]

 
,

1

R
ξ =

κ −  
(23)

where κ = V0/V is the refractive index of sound waves in the defor -ming 
medium. From experimental data presented in Ref. [60], it follows  

Fig. 10. Dislocation structure inhomogeneities viewed as (a) 
acoustic lenses scheme for calculations, and (b) its simplified vari-
ant [121]
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that κ ≤ 1.002 almost until destruction; during deformation of Al,  
R ≈ ld ≈ 10–5 m. Then, according to Eq. (23), ξ ≈ λ ≈ 5 · 10–3 m. The prob-
ability of stress concentrator destruction increases at this distance, and 
a new strain localization nucleus is formed. Since the parameters κ and 
R are determined by the material structure, the dynamics of the strain 
nuclei in the plastic flow can control reorganization of the autowave 
strain localization pattern. Dislocation ensembles with inhomogeneous 
distribution of defects, — dislocation chaos, cells, etc., — can play the 
role of acoustic lenses [4, 7, 98]. 

In these cases, variants of propagation and behaviour of macro-
scopic localized strain zones can be caused by the change of the acoustic 
lens geometry (parameters C and δ and their ratio C/2δ) or dislocation 
distributions during plastic flow. According to Eq. (22), the increase of 
fragment size initiates growth of λ and can cause motion of the plastic 
flow nucleus along the tension axis at the stage of linear work hardening.

The above estimations point out the possible solution of the most 
complicated problem of physics of plasticity. It is emergence of macro-
scopic autowave scale of ∼10–2 m in deforming material whose struc-
tural defects (dislocations) have spatial scale on the order of the Burg-
ers vector of ∼10–10 m. It is not difficult to see that the two-component 
plasticity model accounts well such values. 

5. elastic–Plastic Strain invariant

The principal role in the two-component model of localized plasticity is 
played the interaction of elastic waves with plastic shears directly in the 
process of changing the form. The existence of the quantitative rela-
tionship between the corresponding characteristics was established us-
ing the numerical analysis of quantitative data of the localized plastic 
flow dynamics.

5.1. The Acceptance of the Elastic–Plastic Strain Invariant

For phase autowaves of localized plasticity, the relationship 

 

aw const
t

V

V

λ
≈

χ
 (24)

holds true, where λ and Vaw have been determined above, χ is the inter-
planar distance corresponding to the maximum intensity of the x-ray 
reflection, and Vt is the propagation rate of transverse ultrasonic waves. 
The last two parameters for the materials are determined from refer-
ence books [99, 100]. To elucidate the meaning of Eq. (24), data on the 
value of the ratio λVaw/χVt obtained for different strain modes of the 
investigated materials and presented in Tables 1–3 were statistically 
analysed in Ref. [47] for the following cases:
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• linear work hardening and easy glide in single crystals and poly-
crystals;

• compression strain of alkali halide crystals (KCl, NaCl, and LiF); 
• compression strain of rocks (marble and sandstone); 
• creep of polycrystalline aluminium;
• strain caused by motion of individual dislocations in Zn, CsI, NaCl, 

KCl, and LiF single crystals [101, 102].
Investigations were performed for single crystals and polycrystals 

deformed by slipping, twinning (γ-Fe and marble), and grain boundary 
processes (sandstone). On diagrams σ (ε) for the investigated materials, 
sections of linear strain hardening can be seen in which the phase local-
ized plastic flow autowaves emerge. The ratios λVaw/χVt used to estimate 
the data are given in Tables 1–3 for 38 investigated materials. As fol-
lows from Tables 1–3, 0.2 ≤  Ẑ ≤ 1.1.

To elucidate the nature of the invariant, the question about the law 
of  Ẑ distribution in a sample is of principal importance. To answer it, as 
a 0-hypothesis, it was accepted that sizes  Ẑ obey a normal law [47]. This 
means that the correlation of their behaviour in experimentally estab-
lished limits with the behaviour of any characteristic of the material is 
absent. 

Table 1. A comparison of χVt and λVaw products for metals investigated [25]

Metals

Linear work hardening stage Easy glide stage

λVaw, 
×107 m2/s

χVt, 
×107 m2/s

λVaw/χVt, 
×107 m2/s

λVaw,  
×107 m2/s

χVt,  
×107 m2/s

λVaw/χVt, 
×107 m2/s

Cu 3.60 04.8 0.75 1.9 4.7 0.40
Zn 3.70 11.9 0.30 1.0 5.0 0.20
Al 7.90 07.5 1.10
Zr 3.70 11.9 0.30
Ti 2.50 07.9 0.30
V 2.80 06.2 0.45
Nb 1.80 05.3 0.33
α-Fe 2.55 04.7 0.54 7.4 6.5 1.10
γ-Fe 2.20 06.5 0.34 2.9 6.0 0.49
Ni 2.10 06.0 0.35 1.3 6.0 0.20
Co 3.00 06.0 0.50
Mo 1.20 07.4 0.20
Sn 2.40 05.3 0.65 3.3 4.9 0.67
Mg 9.90 15.8 0.63
Cd 0.90 03.5 0.20
In 2.60 02.2 1.20
Pb 3.20 02.0 1.60
Ta 1.10 04.7 0.20
Hf 1.00 04.2 0.24



28 ISSN 1608-1021. Prog. Phys. Met., 2021, Vol. 22, No. 1

L.B. Zuev, S.A. Barannikova, V.I. Danilov, and V.V. Gorbatenko

To test the 0-hypothesis by the graphic meth-
od, data of Tables 1–3 were transformed into the 
variational series  Ẑ1 <  Ẑ2 < Ẑ3 < ... < Ẑi <   Ẑn–1 <  
<  Ẑn = 38 whose terms serve as arguments for the 
search of numerical values of quintiles −∞ < Q < 
< ∞ of the normal distribution corresponding to 
i (n + 1) [47]. The hypothesis about the normal distri-
butions of  Ẑ is accepted, if Q is actually linear in  
Ẑ. As can be seen from Fig. 11, the dependence Q ( Ẑ) 
in the coordinates Q– Ẑ is linear in character. Thus, 
the quantities  Ẑ obey the normal distribution, 
and va riations of  Ẑ for 0.2 ≤  Ẑ ≤ 1.1 depend only 
on experimental errors in measuring the parame-
ters of the phase localized plasticity autowaves. 

Thus, the average value 〈λVaw/χVt〉, and standard error [47] were 
determined. It turned out that

 

. (25)

Equation (25), called the elastic–plastic strain invariant, quantita-
tively relates the characteristics of the elastic waves (χ and Vt) to the 
characteristics of plastic flow autowaves (λ and Vaw), combining the elas-

Table 3. A comparison of χVt and lVdisl products  
for individual dislocation paths [25]

×107 m2/s NaCl LiF CsI KCl Zn

lVdisl 4.10 4.10 1.90 4.1 1.80
χVt 7.30 8.60 4.00 6.8 4.00
lVdisl/χVt 0.56 0.47 0.47 0.6 0.45

Table 2. A comparison of χVt and λVaw products  
for alkali-halide crystals and rocks [25]

×107 m2/s KCl NaCl LiF Marble Sandstone

λVaw 3.00 3.1 4.3 1.75 0.6
χVt 7.00 7.5 8.8 3.70 1.5

λVaw/χVt 0.43 0.4 0.5 0.50 0.4

Fig. 11. To the verification of distribution type of invari-

ant  Ẑ on the values. The correlation coefficient between Q 

and  Ẑ values is of about 0.98 [119]
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tic (εel ≈ 1) and plastic (εpl ≈ 1) strain components simultaneously acting 
in a solid. The product χVt describes the redistribution of elastic stress-
es with the velocity, Vt, and the product λVaw plays the same role for the 
pattern redistribution with the rate Vaw.

Thus, the elastic–plastic strain invariant acquires the status of the 
parameter suitable for a description of plastic flow processes in mate-
rials irrespective of their nature and operating plasticity microme-
chanisms. To refine its physical meaning, we take into account that  
Vt ≈ χ(ωD/2π) and ħωD ≈ kBθD, where ħ = h/2π is the Planck’s constant, 
and θD is the Debye parameter [103]. Then 

 
. (26)

The value λVaw that characterizes the plastic flow at the stage of 
linear work hardening can be calculated directly from Eq. (26) for the 
known values χ and θD. The results of such calculations, presented in 
Table 4, show that Eq. (26) correctly predicts the order of magnitude of 
λVaw. It is well known that the Debye parameter depends on the tem-
perature [103]. On this reason, Eq. (26) can use to predict the important 
temperature dependence of the plasticity parameter λVaw.

5.2. Nature of the Elastic–Plastic Strain Invariant

Relating the characteristics of the elastic (χ and Vt) and plastic (λ and 
Vaw) deformation components, invariant (25), evidently, plays an impor-
tant role for a description of the localized plasticity dynamics, and it is 
necessary to consider its nature. As shown above, the plastic strain lo-
calization is a consequence of self-organization of a nonlinear active 
deforming medium. As well known, the common feature of the self-or-

Table 4. Estimations of λVaw values via the lattice characteristics of metals [25]

Metal
χ  θD (λVaw)

(calc) (λVaw)
(exp) 

(λVaw)
(calc)/(λVaw)

(exp)

×1010 m K ×107 m2/s ×107 m2/s

Ni 2.030 375 1.60 2.10 0.8
Cu 2.080 315 1.40 3.60 0.4
Al 2.330 394 2.20 2.60 0.8
Mo 2.220 380 1.90 1.20 1.6
Co 2.180 385 1.90 1.30 1.5
Sn 3.750 170 2.50 2.40 1.0
α-Fe 2.020 420 1.80 2.55 0.7
In 2.720 129 0.95 2.60 0.4
Zn 2.077 234 1.00 3.70 0.3
Cd 2.340 120 0.65 0.90 0.7
Mg 2.450 318 1.90 9.90 0.2
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ganization processes in an open system such as a deforming body is a 
decrease in the entropy in the course of processes [20]. This condition is 
satisfied in the process of generation of localized plastic flow autowaves 
[104]. On this reason, the use of the entropy to explain the invariant is 
well justified.

The two-component localized plasticity model is based on the emer-
gence and destruction (relaxation) of elastic stress concentrators accom-
panied by generation of dislocations. This means that during deforma-
tion, the spatiotemporal distributions of the stress fields σ (x, y, t) and 
plastic strains ε (x, y, t) undergo interrelated transformations. The ve-
locities Vt and Vaw control the transformation kinetics of the correspond-
ing fields, and the lengths χ and λ are the spatial scales of these proces-
ses. For this reason, it is convenient to write invariant (25) in the form

 

aw

aw

ş 1
t t

V
Z

V V V

λ λ χ
= = <

χ
 Ẑ < 1, (27)

where the ratios λ/χ = pscale > 1 and Vt/Vaw = pkin > 1 make sense of the 
scale and kinetic thermodynamic probabilities [105]. The scale thermo-
dynamic probability pscale is interpreted as the number of possible nuclei 
of emergence of the localized plastic flow autowaves in a deforming me-
dium, that is, it is determined by significant difference between the 
spatial scales of elastic and plastic deformation processes [106]. The 
structure parameter pscale is dissipative one and causes the autowave dis-
persion, that is, destroys the order. As to the kinetic thermodynamic 
probability, pkin, it determines the choice by a deforming system of the 
observable autowave rate from the range of its possible values 0 ≤ Vaw ≤ Vt. 
This parameter, on the contrary, promotes ordering, because it can be 
associated with the rule of subordination of slow processes to the fast 
ones characteristic for synergetics [12, 15].

In this case, from Eq. (27), it follows that

 ln  Ẑ = ln pscale − ln pkin 
(28)

that corresponds to equations for changes in the entropy due to differ-
ent scales

 
scale scaleln lnB BS k k p

λ
∆ = =

χ , (29)

and different velocities

 
kin kin

aw

ln lnt
B B

V
S k k p

V
∆ = = . (30)

From Eqs. (28) to (30), we finally obtain 

 
kin scale kin scale

1
ln ln ln 0

2B B BS k p k p S S k∆ = − + = −∆ + = < , (31)
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from which it follows that the entropy of the deforming system de-
creases during phase autowave generation. The signs of ∆Sscale > 0 and 
∆Skin < 0 in Eq. (31) confirm the antagonism of contributions of the 
scale and kinetic factors to the nature of the localized plasticity. 

The parameter ∆S < 0 points to the decrease in the entropy due to 
generation of the phase autowave of a localized flow. It is characteristic 
for the self-organization processes in a deforming medium. Since

 
 Ẑ ( � 1ş exp

2BZ S k= ∆ ≈ , (32)

then, ∆S = kBln1/2 ≈ −0.7kB per elementary relaxation act.
To elucidate a nature of Eqs. (7) and (8), we consider the relation-

ship between the elastic and plastic displacements of elements in the 
course of a deformation of a nearly equilibrium medium. In this case, 
the displacement velocities during alterations of the strain and stress 
fields are linear in gradients of plastic and elastic strains within the 
first order of smallness [105, 107], and

 
( )
pl pl
pu Dεε≈ ∇ε , (33)

 
( )
el el
pu Dσσ≈ ∇ε , (34)

respectively. We also take into account the occurrence of velocities ad-
ditional to Eqs. (33) and (34) due to strain–stress interactions: 

 
( )
el pl
adu Dεσ≈ ∇ε , (35)

 
( )
pl el
adu Dσε≈ ∇ε . (36)

Here, it has been accepted that λVaw ≡ Dεσ and χVt ≡ Dσε.
Now, using Eqs. (33) to (36), one can write the equations

 

pl el

el el

,                              (37)

.                             (38)

u D D

u D D
εε εσ

σε σσ

= ∇ε + ∇ε­°
®

= ∇ε + ∇ε°̄





Their coefficients form the matrix [105] 

D D

D D
εε εσ

σε σσ

ª º
« »
¬ ¼

that explains double subscripts of the coefficients D in Eqs. (7), (8), etc. 
According to the Onsager principle [105, 107], the non-diagonal ele-
ments of this matrix are equal, that is, λVaw ≡ Dεσ ≡ Dσε ≡ χVt. At the 
same time, the diagonal elements Dεε and Dσσ, which are simultaneously 
the coefficients of autowave equations (7) and (8), are not necessary 
equal; below, it will be shown that Dεε << Dσσ.
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5.3. Invariant as the Master Equation  
of the Autowave Theory of Plasticity

Since invariant (25) relates the characteristics of simultaneously pro-
ceeding elastic and plastic processes in a deforming medium, it plays an 
important role of the master equation of autowave mechanics of local-
ized plastic flow being developed. This is confirmed by the circumstance 
that invariant (25) has a number of consequences that can be used not 
only to understand the nature of some important features of dynamics 
of localized plasticity, but also to describe them quantitatively. We con-
sider these consequences below.

5.3.1. Propagation Velocity of the Localized Plasticity Autowaves

Differentiating Eq. (25) with respect to the strain ε 

 
, (39)

and writing the result for Vaw, we obtain

 
. (40)

The interplanar distance χ is independent on the plastic strain, so that 
 ẐVtdχ/dε = 0, and

 
. (41)

Transformations of Eq. (41) lead to the relationship

 
, (42)

analogous to the experimentally obtained dependence Vaw(θ) ∝ θ–1, if we 
express the strain hardening coefficient as the ratio of the structural 
parameters λ and χ << λ [5], that is, as θ ≈ χ/λ.

5.3.2. Dispersion of the Localized Plasticity Autowaves

Let us write down invariant (25) in the form

 
aw 2

V k
Θ Θ

= =
λ π

, (43)

where Θ = ZχVt. If Vaw = dω/dk, then, dω = (Θ/2π)kdk. In this case,

 

0

0 0

,
2

k k

d kdk
−ω

ω

Θ
ω =

π³ ³  (44)
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and the dispersion law for the plasticity autowaves acquires the qua-
dratic form 

 ( �20 0( ) ,
4

k k k
Θ

ω = ω + −
π

 (45)

where Θ/2π ≡ α is the parameter used in Eq. (5).
In this case, the corresponding coefficients can also be estimated 

quantitatively. Writing Eq. (26) in the form 

 
, (46)

we can calculate the coefficient ς =  Ẑχ2kBθD/h ≈  Ẑχ2ωD for the values  
χ(Fe), χ(Al), θD

(Fe) = 420 K, and θD
(Al) = 394 K [103]. Then, ς(Fe) ≈ 3.7 · 10−7 m2/s 

and ς(Al) ≈ 4.45 · 10–7 m2/s. This is in agreement with values ς(Fe) = (1.0 ± 
± 0.08) · 10–7 m2/s and ς(Al) = (12.9 ± 0.15) ·10–7 m2/s experimentally  
determined from the dependence Vaw(k) presented in [48] and Fig. 5, b.

5.3.2. The Grain Size and the Localized Plasticity Autowaves

From invariant (25), it follows that

 
. (47)

If the velocities Vt and Vaw depend on the grain size δ, then, differ-
entiation of Eq. (47) with respect to δ yields

 

, (48)

from which it follows that 

 
, (49)

where 

1

ln1 t t

t

dV d V
a

V d d
= =

δ δ  
 and  ,

since 

.

A solution of differential equation (49) is Verhulst function 

 1 2
0

1

/
( )

1 exp ( )

a a

C a
λ δ = λ +

+ − δ
 (50)
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obtained experimentally for Al with grain sizes 5  · 10–3 ≤ δ ≤ 15 mm. In 
Eq. (50), λ0 = const, and C is the integration constant (see above). 

5.3.4. Elastic–Plastic Invariant and the Hall–Petch Relationship

It is well known that the mechanical characteristics of polycrystalline 
materials (yield strength, flow stress, and others) depend on such struc-
tural parameter as the grain size [22, 108]. The corresponding depend-
ences are usually linear in the ‘property–δ−1/2’ coordinates. It makes 
sense to check the validity of Eq. (25) for two intervals of grain sizes 
5 · 10–6 ≤ δ ≤ 10–4 m and 10–4 ≤ δ ≤ 5 ·10–3 m. Results given in Table 5 
indicate the validity of the elastic–plastic invariant under these con-
ditions.

5.3.5. Scale Effect for the Localized Plasticity Autowaves

If the autowave length is measured in samples of different lengths L, 
then,

 
 (51)

and

 

aw

aw

dVd

dL V dL

λ λ
= − . (52)

For λ = λ0 = const and dVaw/dL ≈ Vaw/L, we have dλ/dL ≈ (λ0/Vaw) (Vaw/L) 
and dλ ∝ dL/L, that is, λ ∝ ln L, as established previously in Ref. [25]. 

5.3.6. Autowave Equation for a Plastic Flow

Let us write invariant (25) as

 

aw ş
t

V
Z

V

χ
=

λ
 Ẑ (53)

and assume that ε ≈ λ/χ >> 1 is the plastic strain. Acting with the ope-
rator ∂/∂t = Dεε∂2/∂x2 on both sides of Eq. (53), we obtain 

   

. (54)

Table 5. Elastic–plastic invariant for two grain-sizes’ ranges [25]

Grain size  
ranges, m

χVt  ⋅ 107, 
m2/s

λVaw  ⋅ 107, 
m2/s

λVaw

χVt

Grain size  
ranges, m

χVt  ⋅ 107, 
m2/s

λVaw  ⋅ 107, 
m2/s

λVaw

χVt

5 · 10–6 ≤ δ ≤ 10–4 5.13 2.61 ≈0.5 10–4 ≤ δ ≤ 5 · 10–3 6.17 3.12 ≈0.5
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The velocity of ultrasound propagation depends weakly on the strain; 
so, Vt ≈ const in Eq. (54). Since Vt/Vaw ≈  Ẑ–1 λ/χ ≈ ε, then,

 
. (55)

This relationship is equivalent to differential Eq. (7) of the reaction-
diffusion type for the strain rate derived above.

5.3.7. The Taylor–Orowan Equation and Relationship to the Dislocation Theory

The main problem of the autowave approach to the plastic flow is eluci-
dation of its relationship to the dislocation theory [4–7] traditionally 
used to explain the nature of work hardening in real crystals. As well 
known, these models are based on the Taylor–Orowan equation for dis-
location kinetics [6, 7]

 
md disl

d
b V

dt

ε
= ρ , (56)

relating the plastic strain rate to the density of mobile dislocations and 
their rate. The comparison Eqs. (56) and (54) shows that the first term 

in the right side of Eq. (54) is analogous to expression bρmdVdisl in 
Eq. (56). Indeed, let Vt ≈ χωD ≈ bωD and Dεε =  ẐDσσ =  ẐχVt. If we set 
that 

2 1 1
aw aw
2 2

V V

x x

− −∂
≈

∂
,

we obtain for the dislocation chaos x–2 ≈ l–2 ≈ ρmd, where l is the free path 
of dislocations. Then

    
. (57)

Setting Vd ∝ Vt ≈ Vdisl, we can write Vt ≈ VdislΨ–1; so,

 
. (58)

The relationship of autowave equations (7) with Eq. (56) of dislocation 
kinetics was established in Ref. [110] based on experimental data.

Equation (58) differs from the Taylor–Orowan Eq. (56) by the term 
Dεε∂ 2ε/∂x2 responsible for macroscopic strain redistribution over the vo-
lume, including that proceeding at a certain distance from the existing 
fronts. This means that the Taylor–Orowan equation is a special case of 
general Eq. (58) including, along with the hydrodynamic component 
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f (ε) = bρmdVdisl ∝ Vdisl, the diffusion-like component Dεε∂ 2ε/∂x2 ∝ ∂ 2ε/∂x2  
of the strain flow. 

From here, the important conclusion follows that the autowave plas-
tic flow model is close related to the dislocation theory. It is obvious 
that at small dislocation densities, the application of Eq. (56) allows one 
to obtain correct results. However, for large strains, high defect densi-
ties, and consecutive allowance for the nonlinear dislocation properties, 
it must use autowave Eq. (58) [42, 111–114].

5.3.8. On the Origin of Localized Plasticity Autowaves

An analysis of the elastic–plastic invariant allows one to understand the 
common reason for the emergence of the localized plastic strain auto-
waves. According to the Taylor–Orowan Eq. (56), the condition •ε = const  
set to a testing machine is fulfilled only for constant dislocation flow 
ρmdVdisl = const provided by sufficient mobile dislocation density and 
velocity of their motion. This condition can be violated under strain 
hardening, decrease in the density of mobile dislocations with increas-
ing strain, or decrease of dislocation velocity when the effective stress 
decreases from σ to 1 2

totGbσ − ρ  [6, 7] (where ρtot is the total dislocation 
density). In this case, the condition •ε = const can be satisfied only if the 
diffusion-like strain mechanism is switched by the term Dεεε'' in Eq. (7) 
and induce the emergence of a localized plastic flow nucleus at the dis-
tance ∝ λ from the initial nucleus by one of the above-considered mech-
anisms. This is the reason for the formation of the localized plastic flow 
autowaves.

5.3.9. Spatial Scales of the Plastic Flow

The diagonal elements of the matrix of coefficients of Eqs. (37) and (38), 

D D

D D
εε εσ

σε σσ

ª º
« »
¬ ¼

,

can be interpreted considering that the coefficient Dεε is related to the 
mobile dislocation density and the coefficient Dσσ is determined by the 
elastic stress distribution. Then, because of dimensionality reasons, it 
follows that

 0

F
Dσσ ≈

ρ
, (59)

where F is the force of sample tension during testing and

 

1
md

d
D

dt
−

εε ≈ ρ . (60)
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The dislocation density ρmd depends extremely on the strain [115], and 
its derivative with respect to time in Eq. (60) can change sign during 
deformation. 

From Eq. (59), it follows that typically Dσσ ≈ 1 m2/s. The value of 
Dεε in Eq. (60) is determined less precisely, because the data on mobile 
dislocation density at different stages of the plastic flow available from 
the literature differ substantially. However, from the data [4–7], it fol-
lows that 10–8 ≤ Dεε  ≤ 10–7 m2/s; so, Dεε << Dσσ. We note that this condi-
tion corresponding to a slower propagation of the activator (plastic 
strains) in comparison with the inhibitor (stresses or elastic strains) is 
usually for autowave generation [12–16, 34].

As already mentioned above, the coefficient Dσσ describes the redis-
tribution of stresses over the volume and the coefficient Dεε is deter-
mined by the reorganization of dislocation substructures. In this case, 
it is natural to consider that Dσσ and Dεε characterize the macroscopic 
and dislocation levels of plastic flow, respectively. Taking advantage of 
the diffusion approach, we now express the coefficients Dεε and Dσσ in 
general as the product of the scale factor R by the velocity V, that is, 
D = R V. Here, R is the size of the inhomogeneity zone in the deforming 
system and V is the velocity of redistribution of the strain or stress. 
Since the coefficient Dσσ is associated with stress redistribution, the 
characteristic velocity of this process is the transverse sound velocity, 
Vt, that is, V = Vt ≈ 103 m/s. In this case, R ≡ lσ = Dσσ/Vt ≈ 10–3 m can be 
identified with the scale of macroinhomogeneity of the plastic strain. 
For the coefficient Dεε ≈ 10−8 m2/s, we can set V = Vdisl ≈ 10 m/s [101]; 
so, in this case, R ≡ lε = Dεε/Vdisl ≈ 10–9 m ≈ nb, where n ≈ 2, …, 5, that 
obviously corresponds to the dislocation scale of the plastic flow.

This analysis establishes the hierarchy of structural levels of plastic 
deformation. It implies that values of the transport coefficients Dεε and 
Dσσ in Eqs. (7) and (8), characterizing the dislocation and macroscopic 
scales of autowave, are determined by the scales of underlying levels. 
Thus, the equation 
 Dεε ≈ ldVdisl (61) 

relates the coefficient Dε to the dislocation free path lε, and the equation

 Dσσ ≈ λVt (62)

plays the same role for the macroscopic level. Results of calculations 
from Eqs. (61) and (62) are presented in Table 6. The coefficient Dεε was 
estimated from the displacement of strain fronts δx during time t as 
Dεε ≈ (δx)2/t. The Dεε values so obtained were used to calculate the scale 
factor R.

We will also take into account that the presence of minimal size lmin  
that allows the implementation of such a process is characteristic for 
the autowaves in active media [15]. From equality of the oscillation pe-
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riod ϑos ≈ 2πω–1 and the characteristic diffusion time ϑD ≈ l2/2D  in the 
system, it follows that 

 ( � ( �1 2 1 2

min os2 4l D D≈ ϑ ≈ π ω . (63)

Using for calculation of lmin the characteristics of the slowest processes     
D ≡ Dεε ≈ 10–8 m2/s and ω ≈ 10–3 Hz, we obtain the estimation from below 
lmin ≈ 10–2 m, close to the observed minimal length of the sample 
l (emin

xp) ≤ 2  ⋅ 10–2 m, at which the autowave processes of strain localization 
are not observed.

5.3.10. Mobile Dislocation Density

Using Eqs. (58) and (59), from Eq. (25), we obtain

 

 (64)

or

 

1 2 md
md md( )

dd

dt dt
− − ρ

ρ ≈ −ρ = Ω . (65)

From here, it follows that

 
2

md mdd dt−ρ ρ = −Ω , (66)

i.e., ρmd ∝ –t–1 or ρmd ∝ ε–1, since ε ∝ t under active loading. Gilman [115] 
reported this decrease of the mobile dislocation density at high strains. 

5.3.11. Work Hardening Coefficient

We now take advantage of Eq. (41) for the autowave velocity and for-
mula (45) for the dispersion obtained above to write 

 
. (67)

Calculation with Eq. (67) yields θ ≈ 3 · 10–3, which is close to expe-
rimental values at the stage of linear work hardening of single crys - 
tals [5–7].

Table 6. The characteristics of localized plastic flow autowaves [25]

Composition (wt.%) Vaw  ⋅ 105, m/s Dεε  ⋅ 107, m2/s R ⋅ 109, m

Fe–0.1%C–2%Mn 04.5 08.1 5.3
Cu–10%Ni–6%Sn 06.5 07.6 5.2
NiTi 01.0 00.8 0.6
Ni3Mn 10.0 13.5 6.8
γ-Fe–12%Mn 03.5 07.8 4.3
γ-Fe–0.5%N 02.7 02.0 1.0
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5.3.12. Relationship between  
the Elastic and Plastic Strain Components

Discussing the physical meaning of invariant (21), we noted that to 
analyse relationship between the elastic, εel, and plastic, εpl, components 
of the total strain εtot, it is generally accepted εtot = εel + εpl ≅ εpl, since  
εpl >> εel. However, from Eq. (25) it obviously follows that the interrela-
tion between the elastic and plastic components of strain is not reduced 
to this additive formula, but is much more complicated. 

According to the developed representations, the elastic strains gov-
ern the plastic flow. In particular, the behaviour of the elastic strain 
field explains the formation of the macroscopic autowave scale in the 
course deforming media.

6. Plastic Flow  
as a Macroscopic Quantum Phenomenon

Measurements of the localized plasticity autowave characteristics per-
formed for a large number of metals draw attention to a very inte-
resting regularity. Its observation has additionally confirmed a critical 
importance of the elastic–plastic strain invariant given by Eq. (25)  
and has emphasized once again its deep physical meaning discussed in 
detail above.

6.1. Localized Plastic Flow  
and the Planck Constant

Remarkable regularity has been found by numerical analysis of the  
experimental data on λ and Vaw obtained for nineteen metals. We noticed 
that the products λVaw ρ r

 3
ion were very close to Planck’s constant  

h = 6.63 ·10−34 J · s [116] for all investigated metals. The calculated re-
sults are presented in Table 7 together with the metal density, ρ, and 
ion radius, rion ≈ χ, borrowed from [99, 100]. The average value, calcu-
lated for nineteen metals, is 〈h〉 = (6.86 ± 0.45) ·10–34 J · s, and the ratio 
〈h〉/h = 1.3 ± 0.06 ≅ 1. 

Based on this ratio, we concluded that 〈h〉 = h.
This coincidence is surprising and requires careful validation, for 

what the quantities 〈h〉 and h were matched using the standard statisti-
cal procedure based on the Student’s paired sample t-test [47]. In calcu-
lations, the value 〈h〉 was the average of nineteen experimental measure-
ments (n1 = 19), and the value h was obtained in a single measurement 
(n2 = 1) without variance, because it was determined with high accuracy 
[116]. The estimation showed that the values 〈h〉 and h are statistically 
identical for a 95% confidence level. Thus, for further consideration we 
can set that
 〈h〉 = h. (68)
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The surprising possibility of calculating the quantum constant, h, from 
the results of macroscopic mechanical experiments can be regarded, in 
general, as the obvious manifestation of the quantum character of the 
plastic flow in crystals. In this case, it is evident that further consider-
ation could be based on the concept of wave-particle duality [116]. An 
opportunity arises to use the solids method recognized in physics [117–
119], i.e., to introduce a specific quasi-particle associated with the local-
ized plastic flow autowave. This gives us a clue to the most distinctive 
features of the plastic flow and thus provides additional insight into the 
plasticity problems. By this reason, the next step in the development  
of this model is a quantum representation of the plastic flow. This ne-
cessitates the introduction of the quasi-particle corresponding to the 
localized plastic flow autowave. This idea will provide a better insight 
into the nature of plasticity. We call such hypothetic quasi-particle the 
auto localizon [120, 121].

6.2. Introduction of a Quasi-Particle Related to the Plasticity

To develop this point of view, it is necessary to find the principal char-
acteristics of the autolocalizon as a quasi-particle related to the local-
ized plastic flow autowave. For this aim, it is convenient to use the 
traditional for quantum mechanics considerations onto the problem  
of wave–quasi-particle duality [103, 116, 117].

Clearly, the characteristics of the quasi-particle have to be related 
to those of the autowave. The effective mass of the autolocalizon is of 
principal importance. By definition [116],

 
> @

2
(1)
ef 2

( )m k
k

∂
= ω

∂
 . (69)

Equation (69) describes the first method of calculating the effective 
masses for Al and γ-Fe, for which data are available on the dispersion 
relationship ω (k). The second method was proposed in Refs. [118, 119]. 
Using the de Broglie formula [116], the effective mass can be expressed 
in terms of the velocity of localized plastic flow autowave as

 

(2)
ef

aw

h
m

V
=
λ

. (70)

Table 7. The Planck constant, h, calculated with the use of Eq. (68) [25]

Metal Cu Zn Al Zr Ti V Nb γ-Fe α-Fe Ni Co

h ⋅1034 11.9 9.3 2.8 6.1 4.9 3.5 4.9 4.6 4.6 6.1 7.1

Metal Sn Mg Cd In Pb Ta Mo Hf

h ⋅1034 8.9 4.9 7.4 9.9 18.4 5.5 3.0 6.16
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Finally, using Eq. (68) 

 
(3) 3
ef ionm r= ρ , (71)

we obtain the third method of quantitative estimation of the effective mass.
Calculations with the help of Eqs. (69)–(71) were carried out for all 

investigated metals. As found, 〈m(1)
ef〉 ≈ 〈m(2)

ef〉 ≈ 〈m(3)
ef〉 ≈ 1.8 ± 0.3 a.m.u. 

(atomic mass units). This suggests that the value 〈mef〉 = 1.8 ± 0.3 ≈ 2.0 
a.m.u. can be accepted as the rough estimate of the effective autolocali-
zon mass, i.e., ma–1 ≡ 〈mef〉 ≈ 2.0 a.m.u.

The problem exists to understand how the effective mass arises. To 
solve it, we took into account that the dislocation mobility under plastic 
deformation depends on the viscosity B of phonon and electron gases in 
solids [119, 121]. If the dislocations travel uniformly, i.e., Vdisl = const  
and   ·Vdisl = 0, the viscous drag force per unit length is Fvis ∝ BVdisl ∝ Vdisl  
[63]. However, the inertial drag force Fvis ∝   ·Vdisl [62] appears in addition 
to the viscous drag force Fvis during an accelerated motion of dislocation 
when Vdisl ≠ const and   ·Vdisl ≠ 0. Evidentially, the second variant is more 
realistic for the dislocation behaviour in the localized plasticity auto-
waves. Then, the total drag force is

 

disl
vis in disl disl disl

VB
F F F BV V B V6

§ ·
= + ≈ + = +¨ ¸ν ν© ¹



 . (72) 

Here ν is the frequency of relaxation acts, and the ratio B/ν can be in-
terpreted as the total virtual effective mass per dislocation length unit 
(the effective mass). Thus, the additional drag force of inertial origin  
Fin ≈ (B/ν)   ·Vdisl ∝   ·Vdisl appears in Eq. (72). Since the contributions of pho-
non and electron gases to the dislocation drag coefficient are additive, 
i.e., B = Bph + Be [63], it follows from Eq. (72) that 

 

ph e
ph disl e disl disl disl

B B
F B V B V V V6 ≈ + + +

ν ν
  . (73)

In Eq. (73) the coefficients of the dislocation acceleration   ·Vdisl make 
sense of the virtual mass, including contributions from both phonon, 
Bph/ν, and electron, Be/ν, gas viscosities, correspondingly. Then, we 
have for the inertial term

 

ph ph ee
in disl disl disl

B B BB
F V V V

+
≈ + ≈

ν ν ν
   . (74)

As demonstrated below, the term with the electron gas viscosity, Be/ν, 
can give rise to an interesting additional effect. Following [117], we 
consider here that the velocities of the autowave and autolocalizon that 
corresponds to it are equal, i.e., Va–1 = Vaw. Another autolocalizon char-
acteristic can be calculated using the standard representation [117]. The 
main characteristics of the hypothetic autolocalizon are presented in 
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Table 8. These considerations elucidate the origin and the physical sense 
of the autolocalizon.

Now let us consider some possibilities offered by this approach. 
Bearing in mind Eq. (70), we can rewrite the elastic–plastic strain in-
variant (25) in the form

 
, (75)

where h/χVt = mph and h/χVaw = ma–1 are the phonon and autolocalizon 
masses, respectively. In this case, from Eq. (75), it follows that ma–1 ≈ 
≈ mph ≈  Ẑ–12mph. Hence, Eq. (75) accounts for the mechanism proposed 
in Ref. [122] to explain dislocation generation in the lattice due to the 
phonon condensation.

Recall that the ideas about the role of quasi-particles in plasticity 
physics have long been in the air. The proposed concept was elaborated 
within the conventional approach adopted in solid-state physics that 
involves the introduction of a quasi-particle for a description of the 
wave processes. By way of example, it is just suffice to mention the el-
ementary excitations in media [117]. 

Thus, the authors of Ref. [123] made one of the first attempts of 
this kind. They introduced a quasi-particle called crackon to address 
self-similar mechanisms of brittle crack propagation. Steverding [124] 
made use of quantization of elastic waves propagating in solids at frac-
ture. Zhurkov [125] introduced the elementary excitation in crystals 
under deformation, which he called dilaton. The author of Ref. [81] 
proposed the possible existence of a specific deformation or fracture 
precursor. He coined the name frustron for this phenomenon. 

Generally, all above-enumerated examples seem explained as the  
attempts to introduce the quantum mechanics principles into plasti - 
c ity physics. This idea looks promising because it spreads the rules and 
the apparatus of this science on plasticity physics. Thus, for example, 
authors of [126, 127] used the quantum tunnelling mechanism to  
explain the low-temperature features of processes involving dislocation 
breaking from local obstacles. Later on, authors of [128] supplied inex-
act explanation of this phenomenon for the case of dislocation motion in 
the Peierls relief. Without doubt, ideas of this kind are transparent 

Table 8. The principal characteristics of the autolocalizon [25]

Characteristic Formulae Value

Dispersion law ω (k) ∝ 1 + k2 —
Mass ma–1 = mef ≡ h/λVaw 1.8 ± 0.3 a.m.u.
Rate Va–1 ≡ Vaw 10−5 – 10−4 m ⋅ s−1

Momentum p = ħk ≡ h/λ (6–7) ⋅ 10−32 J ⋅ s ⋅ m−1
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enough; the underlying theoretical premises are based on the space 
quantization related to the discreteness of the crystal lattice in which 
generation and evolution of elementary plasticity events and fracture 
take place. 

The autowaves and the quasi-particle concepts are complementary 
and interrelated by the general physical principles. Indeed, the above-
described idea allows one to simplify significantly a solution of some 
problems of autowave plasticity. Thus, one can estimate the length of 
the localized plastic flow autowave in this framework. With this aim in 
view, the motion of autolocalizon is considered in the phonon gas. In 
view of fluctuations of the phonon gas density, it is proposed that the 
autolocalizon moves similar to the Brownian particle. In accordance 
with Einstein’s theory [66, 105, 129], the free path of the Brownian 
particle is 

 a-l

Bk T
S

Br
≈ τ

π
, (76)

where B is the dynamic viscosity of the phonon gas and the characte-
ristic time is estimated as τ ≈ 2π/ωaw ≈ 103 s (ωaw is the frequency of the 
plastic flow autowave).

Hence, the free path of the quasi-particle is represented as a correla-
tion radius of localized plasticity zones (autowave length λ). Assume 
that the autolocalizon has the size ra–l ≈ 10−10 m, τ ≈ 103 s, B ≈ 10−4 Pa⋅s 
[63], and Ò = 300 K. The resultant value is S ≈ 10−2 m, which is evi-
dently close to the experimentally obtained autowave length, i.e., S ≈ λ. 
This coincidence is the good evidence in favour of the autowave–autolo-
calizon duality for description of the plasticity phenomenon.

Thus, it can be concluded that the application of Eq. (76) yields 
equivalent numerical estimates of the autowave length. This suggests 
that both the autowave and the quasi-particle concepts correspond to 
the duality principle. The proposed representation appears to be produc-
tive for theoretical purposes, in particular, for plasticity physics, be-
cause various estimates could be simplified with its help.

6.3. Plasticity in the Line of Other Macroscale Quantum Phenomena

The obvious evidences in favour of the quantum character of plasticity, 
obtained above, are required to define more precisely the characteristics 
of autolocalizons. In addition, it is necessary to compare the plasticity 
phenomena with other quantum regularities observable on the macro-
scopic level.

A close connection has been established earlier in Refs. [25, 41, 60] 
between the deformation and the acoustic characteristics of the deform-
able medium. This suggests that the deformation processes can be de-
scribed by a hybridized excitation spectrum shown in Fig. 12. This 
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spectrum was obtained by the imposition of two dependences: the linear 
dispersion relation ω ≈ Vtk for acoustic waves (phonons) [96] and the 
quadratic dispersion relation ω = ω0 + α (k – k0)

2 experimentally estab-
lished for localized plasticity autowaves or autolocalizons in [48]. 

To validate the hybridized dependence ω (k), the coordinates ω̂ and λ̂  
were estimated for the point of intersection of the plots in the high-
frequency spectral range. The frequency ω̂ ≈ ωD and wave number k̂ cor-
respond to the minimal elastic wavelength, which is of the order of the 
distance between closely packed planes, i.e., k̂ ≈ 2π/χ. This evidence in-
dicates that the generalized dispersion relation holds true for both pho-
nons and autolocalizons.

The dispersion curve in Fig. 12 shows a remarkable analogy with 
the dispersion relation obtained for 4He superfluid [107]. The latter dis-
persion relation shows a minimum corresponding to the origination of 
ro tons, i.e., bosons introduced by Landau to explain the superfluidity nature 
and having the effective mass mrot ≈ 0.64 a.m.u. [107]. Moreover, the 
quadratic dispersion law obtained for the rotons is similar to the autowave 
dispersion described by Eq. (5). This is indicative of a possible similar-
ity between the localized plasticity and the superfluidity. It remains to 
be seen whether this is a formal similarity or it has a physical sense.

Additional argument in favour of these attractive conjectures is 
based on an analogy. The 4He superfluidity is attributed to the occur-
rence of normal and superfluid components in 4He liquid at the tempe-
rature T ≤ 2.17 K; the corresponding dynamic viscosities obtained for 
these components are  η̂sf → 0 and η̂n >> η̂sf. Analogously, the plastic flow 
in the deformable medium would involve both the motion of individual 
material volumes engendered by changing and the high-velocity dis-
location motion. There is the following argument in favour of this point 
of view. Slow processes correspond to high viscosity of the material, 
 η̂mat = Gτ ≈ 5 ·1012 Pa⋅s (here, G ≈ 5 ·1010 Pa is the shear modulus, and  
τ = ω–1

aw ≈ 102 s is the period of the autowave). The rate of fast disloca tion 
motion, Vdisl ≈ (b/B) σ, is controlled, as discussed above, by the viscosity 
of the phonon and electron gases, B = Bph + Be ≈ 10–4 Pa · s [63].

It is important to note that   η̂mat/B ≈ 1016. It is attractive  
to use here the Dirac Large Number Hypothesis [130], according to 
which similar dimensionless ratios do not appear randomly and must be 
related to analogous ratios of other characteristics. It is easy to find 
that η̂mat/B ≈ ≈ ωD/ωaw ≈ (λ/χ)2 ≈ 1016, and we can write 

 

22 2
aw aw

2
aw

1
D D t

V

V

λ ω λλ χ
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ω ω χ ω χ
, (77)

where we have designated λωaw = Vaw and χωD = Vt. Apparently, this can 
be independently derived based on the elastic–plastic strain invariant.
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Three macroscopic quantum 
effects are well known in phys-
ics: superconductivity, super-
fluidity [107], and the quantum 
Hall effect [131]. The charac-
teristics of these effects are 
presented in Table 9. Based on 
the data obtained in this work, 
the localized plasticity phenome-
non might be included in the same list. In what follows, we try to apply 
the quasi-particle approach to an analysis of the Portevin–Le Chatelier 
effect of serrated plastic deformation [31, 57]. Assume that autowaves 
having length λ are arranged along the sample length L. Then the 
number of autowaves is given as  
λ = L/m, where m = 1, 2, 3, …. The deformed sample has the length L ≈ 
≈ L0 + δL (here, L0 is initial sample length); hence, δL ≈ λ. Thus, from 
Eq. (70), it follows that

 
3

0 aw a-l aw

h h
L m m

V m V
δ ≈ ≈

ρ χ
. (78)

The autolocalizon mass ma–1 appears in Eq. (78), which confirms 
that a jump-wise elongation of the tensile sample is proportional to m, 
i.e., δL ∝ m. For the linear work hardening stage, Vaw = const; hence,  
h (ρ0χ3Vaw)

–1 = const for each element. Given sufficient instrumentation 
sensitivity, the recorded curves σ (ε) will exhibit a jump-like behaviour; 
moreover, accommodation of the sample length will occur to fit the gen-
eral autowave pattern. Depending on the kind of the material, the de-
formation occurs via different mechanisms. Numerical estimates show 
that, for m = 1, ρ0 ≈ 5 · 103 kg/m3 and χ ≈ 3 ·10−10 m the elongation jump 
is δLm=1 ≈ 10−4 m. For the length of the sample L ≈ 10−1 m, the elongation 
jump corresponds to the deformation jump δ εm=1 ≈ 10−3, which is close to 
the experimentally obtained value [31]. 

Moreover, it also follows from Eq. (78) that an increase in the load-
ing rate would cause a decrease in the deformation jumps, i.e., δL ∝ Vaw

–1. 
This inference is supported by the experimental results obtained for Al 
samples tested at 1.4 K and different loading rates in [50]. Thus, the 
autowave rate was found to be proportional to the motion rate of the 
testing machine crossheads, i.e., Vaw ∝ Vmach. According to Eq. (74), the 

Fig. 12. Generalized dispersion curve 
for plastic deforming medium. The 
inset shows the high-frequency branch 
of the dispersion relation [119]
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velocity Vaw will increase with rate Vmach, while the deformation jump 
magnitude will grow less.

7. Autowave Plasticity and Periodical table of elements

The problem of physical description of the plasticity nature has been 
relevant to date. For progress in this area, information is important on 
the dependences of the metal plasticity on their positions in the (Men-
deleev’s) Periodic table of the elements, analogous to the well-known 
dependences of their physical properties on atomic numbers [132].

7.1. Investigated Metals and Experimental Results

The investigations of localized plastic flow was performed for nineteen 
metals from the 3rd, 4th, 5th, and 6th periods of the Periodic table of the 
elements, as shown in Table 10. At the bottom of it, the numbers of 
conduction electrons, n, per unit cell [133] are given. This quantity is 
proportional to the electron gas density. It is well known that the posi-
tion of elements in the Periodic table is determined by the electronic 
structure of their atoms. In this case, the serial number N of the period 
coincides with the number of electronic shells of the corresponding at-
oms, and the number of conduction electrons per unit cell, n, for all 
investigated metals, except transition metals, Fe, Co, and Ni, coincides 
with the serial number of the group in the Periodic table [132].

Our analysis of the data obtained demonstrated that at least within 
interval 12(Mg) ≤ Z ≤ 82(Pb) (here, Z is the atomic number of the element) 
the plasticity parameter λVaw markedly oscillates about its average val-
ue. According to the data [134–136], these oscillations correspond to 
the behaviour with increasing Z of some independently determined char-
acteristics of the lattice, for example, of the Debye temperature, bind-
ing energy, density, melting temperature, elastic modulus, electron 
work function, and so on [134]. Such correspondence is illustrated by 

Table 9. A comparison of the macroscopic quantum effects, where å denotes  
an electron charge, ñ is a speed of light, r is the vortex radii in superfluidity 4He

Phenomenon
Characteristic

Value Formulae

Superconductivity [117] Magnetic flux Φ = (πħc/e) m 

Superfluidity [117] Rotational velocity of vortexes 
in superfluid 4He

v = (ħ/AHe) (1/r)m

Quantum Hall effect[130] Hall resistance RH = (h/e2) (1/m)
Serrated strain by the Porte-
vin–Le Chatelier effect

Elongation jump magnitude δL = mh/(ρrion
3 Vaw)
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the periodic matched behaviour of the dependences of λVaw and of the 
characteristic Debye’s parameter on the atomic number Z shown in Fig. 13.

As follows from Table 10, experimental values of the invariant 〈 Ẑ〉i 
for the 3rd–6th periods of the Periodic table of the elements somewhat 
differ from each other. To test the significance of this difference, we 
used the statistical procedure to compare the average values of the inva-
riants 〈 Ẑ〉i for these periods according to the Student paired t-test [47].

Calculations of the t-criteria for pairs of values of the elastic–plas-
tic invariant being compared showed that the difference in values 〈 Ẑ〉3, 

Table 10. Positions of the investigated metals in the Periodic table 

P
er

io
d
s

S
er

ie
s Metals 

Groups of the Periodic table λVaw

χVt

= Z
I II III IV V VI VIII

3 III 12Mg 13Al 〈 Ẑ〉3 = 0.57 ± 0.63

4 IV 22Ti 23V 26Fe 27Co 28Ni 〈 Ẑ〉4 = 0.50 ± 0.15

V 29Cu 30Zn

5 VI 40Zr 41Nb 42Mo 〈 Ẑ〉5 = 0.48 ± 0.15

VII 48Cd 49In 50Sn

6 VIII 72Hf 73Ta 〈 Ẑ〉6 = 0.69 ± 0.45

IX 82Pb

n 1 2 3 4 5 6 8 9 10 [133]

Fig. 13. The oscillations of the plasticity parameter of metals (up-
per curve) and of the characteristic Debye’s parameter (lower 
curve) as a functions of atomic number of elements, Z [121]
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〈 Ẑ〉4, 〈 Ẑ〉5, and 〈 Ẑ〉6 was statistically insignificant, so that with a probability 
of ≈0.85, these values belonged to one general population. Averaging 
over all nineteen metals yielded 〈 Ẑ〉5Me ≈ 1/2. This estimate coincides with 
the value reported earlier in Ref. [25] for metals and non-metallic materials. 

This suggests that the value of invariant (25) is independent of the se - 
rial number of the period in which the investigated metal is put in the 
Periodic table. In other words, the possibility has been confirmed to con-
sider relation (1) as the universal invariant characteristic of the develop-
ment of the localized plastic yield at the stage of linear work hardening.

As to the plasticity parameter λVaw, it correlates with a number of 
other physical properties, as shown in Fig. 14, a. In this case, however, 
the corresponding dependences are split according to the serial numbers 
of the periods, to which the investigated metals belong.

An analysis of the behaviour of the parameter λVaw within each pe-
riod of the Periodic table of the elements demonstrated, in particular, 
that the value (λVaw)

–1 is proportional to the number n of the conduction 
electrons per unit cell of the metal [133]. The existence of this relation-
ship was already indicated in the works [118, 119], but, only after in-
vestigation of the sufficient number of metals, it became pos sible to 
highlight the separation over the periods of the Table of the elements.

It turned out that inside each investigated period, the linear depen-
dence
 (λVaw)

–1 ≈ C + Dn (79)

was observed, where the coefficients C and D differ for the elements of 
the 3rd–6th periods. Experimental data processing demonstrated that the 
coefficient D in Eq. (79) is given by the formula (Fig. 14, b)

 D ≈ D0 exp (–q/N), (80)

where N = 3, 4, 5, and 6 is the serial number of the period in the Peri-

Fig. 14. The dependence of (λVaw)
−1 on the number of electrons per unit cell n (a); the 

coefficient D in Eq. (79) as a function of the period number N (b) [25]
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odic table of the elements, and D0 and q are constants. The correlation 
coefficient between lnD and N−1 was close to (–1).

Thus, it was established that during deformation of a solid, the 
plastic yield localization parameters (the autowave characteristics of the 
process) were related with the characteristics of the electron structure 
of metals, that is, with the position the metal occupied in the Periodic 
table of the elements. This relationship was manifested through the 
complicated dependence of the macroscopic characteristic of the evolu-
tion of the autowave localized plasticity, λVaw, simultaneously on the 
serial numbers of groups n and periods N of the Periodic table of the 
elements. 

7.2. On the Nature of the Regularities Above

Understanding of the results presented above is aimed at a comparison 
of values of the elastic–plastic strain invariant given by Eq. (25) for 
different periods the Periodic table of elements (Table 10). It is impor-
tant for the elucidation of the nature of the dependence of the autowave 
plasticity parameter λVaw on the electron density for all the investigated 
metals, i.e., on the position of elements in the Periodic table.

From Fig. 14, a and Eq. (79), it follows that (λVaw)
–1 ∝ n for metals 

of the 3rd–6th periods. When analysing the meaning of this dependence, 
primary attention should be paid to the fact that we can easily go from 
the parameter (λVaw)

–1 to the de Broglie equation for the effective mass 
mef = h/λVaw. The data shown in Fig. 14, a demonstrate that mef ∝ n. 
Apparently, this dependence is very important and must be explained. 
It is possible to use for these aims the considerations about the nature 
of the autolocalizon (see above).

As follows from Eq. (74), effective virtual mass, mef, depends on the 
viscosity of phonon and electron gases in crystals [63]. In this circum-
stance, the expression for the drag force, acting on dislocation (73), 
incorporates the term (Be/ν)  

·Vdisl, described the electron gas contribution 
in this force. It is well known that the electron viscosity coefficient, Be, 
is proportional to electron gas density, which is characterized by the 
number n in Table 10 [101]. Thus, Fig. 14, a corresponds to the depen-
dence (λVaw)

–1 ∝ mef ∝ Be ∝ n.
For the metals of the 4th and 5th periods, it was found that

 
( � 1

aw *
expV

− § ·χ
λ ∝ ¨ ¸χ© ¹

. (81)

It is equivalent, evidentially, to ln (λVaw)
–1 ∝ χ (Fig. 15), and besides the 

correlation coefficients between the values ln (λVaw)
–1  and χ are ξ4 = –0.53 

and ξ5 = –0.89, respectively. As to the quantity χ*, it is close to the in-
terplanar distance corresponding to the maximal intensities of x-ray 
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reflection for K and Rb, from which the 4th and 5th periods begin. So, 
for the 4th period, 3.64 ·10−10 = χ4

* ≈ χK = 3.75  · 10−10 m, and for the 5th 
period, 4.52  · 10–10 = χ5

* ≈ χRb = 4.33  · 10–10 m [99]. This correlation can 
provide a basis for predicting patterns of plastic flow of metals based on 
their lattice characteristics.

The results obtained demonstrate that during plastic flow in metals, 
the elastic–plastic strain invariant  Ẑ is independent of the element posi-
tion in the Periodic table, whereas the plasticity characteristics (λVaw) or 
(λVaw)

−1 at the linear work hardening stage correlate with the character-
istics of the electron structure of metals. This correlation is manifested 
through the change of the macroscopic characteristics of localized plas-
ticity autowave propagation at the stage of linear work hardening de-
pending on the number of valence electrons. This dependence is ex-
plained by the electron gas contribution into dislocation drag. These 
data indicate directly that the nature of the electron gas contribution to 
the force of drag is more complex in character than that foreseen by 
traditional theories [137–139].

8. Conclusion

The new approach based on the synergetics is suggested for the explana-
tion of plastic flow regularities. Similar representations developed for a 
description of physical nature of plastic strain in solids consider the 
activity, nonlinearity, and nonequilibrium of a deforming medium as 
well as irreversibility of the deformation in it. These representations 
put at the forefront the macroscopic autowave features of plastic flow 
dynamics. A deforming sample in tension at a constant velocity behaves 
as a universal generator of autowave modes. Within the limits of this 
approach, the localized plastic flow is described by the two-compo nent 
model based on causal relationship between elementary plasticity events 

Fig. 15. The correlation 
between value (λVaw)

−1 
and the interplanar dis-
tance for 4-th and 5-th 
periods of the Periodic 
table of the elements 
[120]
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and signals of acoustic emission they generated. The model can be used 
to estimate the spatial and time parameters of the deformation process.

The natural relationship has successfully been found between the 
developed autowave theory of plastic deformation and the dislocation 
theory. It turned out that the latter is the limiting case of the former 
for small dislocation density. This makes it possible to use the existing 
dislocation models to explain the mechanisms that control the formation 
of the localized plasticity autowaves.

The suggested interpretation of the effective mass mef emphasizes 
the direct relationship of the macroscopic localized plastic strain char-
acteristics λ and Vaw with the parameter of the electronic structure of 
metal — the number of electrons per unit cell. The above-considered 
mechanism based on the existence of mechanical relationship between 
the moving dislocations and the electronic gas is indirectly confirmed  
by investigations performed in Ref. [140] that related the electric po-
tential on the surface of a deforming metal sample with entrainment of 
conduction electrons by moving dislocations during jump-like plastic 
deformation.

Thus, it has been established that the plasticity of metals is largely 
determined by their position in the Periodic table of the elements. Re-
sults of the quantitative experimental research of the complex charac-
teristics of the development of localized plastic strain for 19 metals 
belonging to the 3rd–6th periods of the Periodic table have shown that 
the value of the elastic–plastic strain invariant is independent of the 
position of the element in the Periodic table and can be considered as the 
universal characteristic of plastic yielding.
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ÏËÀÑÒÈ×Í²ÑÒÜ: Â²Ä ÊÐÈÑÒÀË²×ÍÎ¯ ¥ÐÀÒÍÈÖ²  
ÄÎ ÌÀÊÐÎÑÊÎÏ²×ÍÈÕ ßÂÈÙ

Îáãîâîðåíî íîâ³ óÿâëåííÿ ó ô³çèö³ ïëàñòè÷íîñòè êðèñòàë³â. Çàïðîïîíîâàíî ìî-
äåëü ïëàñòè÷íî¿ ïëèííîñòè, ÿêà ìîæå îïèñóâàòè ¿¿ îñíîâí³ çàêîíîì³ðíîñò³. Çà 
äîïîìîãîþ åêñïåðèìåíòàëüíîãî äîñë³äæåííÿ ïîêàçàíî, ùî ëîêàë³çàö³ÿ ïëàñòè÷-
íî¿ ïëèííîñòè â³ä³ãðàº ðîëü ó ðîçâèíåíí³ ïëàñòè÷íî¿ äåôîðìàö³¿. Îäåðæàí³ äàí³ 
ïîÿñíåíî çà äîïîìîãîþ ïðèíöèï³â òåîð³¿ íåð³âíîâàæíèõ ñèñòåì. Ââîäèòüñÿ êâà-
çè÷àñòèíêà äëÿ îïèñóâàííÿ ÿâèùà ïëàñòè÷íîñòè. Âñòàíîâëåíî çâ’ÿçîê ì³æ õà-
ðàêòåðèñòèêàìè ëîêàë³çîâàíî¿ ïëàñòè÷íîñòè ìåòàë³â òà ¿õí³ì ïîëîæåííÿì ó Ïå-
ð³îäè÷í³é òàáëèö³ åëåìåíò³â. Ðîçðîáëåíî íîâèé ìîäåëü äëÿ îïèñóâàííÿ ëîêàë³çî-
âàíî¿ åâîëþö³¿ ïëàñòè÷íî¿ ïëèííîñòè ó òâåðäèõ ò³ëàõ. Çã³äíî ³ç çàïðîïîíîâàíèì 
ìîäåëåì åëåìåíòàðí³ àêòè ïëàñòè÷íîñòè, ùî ðîçâèâàþòüñÿ ó äåôîðìîâàíîìó ñå-
ðåäîâèù³, ´åíåðóþòü ³ìïóëüñè àêóñòè÷íî¿ åì³ñ³¿, ÿê³ âçàºìîä³þòü ³ç íîñ³ÿìè 
ïëàñòè÷íîñòè é ³í³ö³þþòü íîâ³ åëåìåíòàðí³ çñóâè. Åêñïåðèìåíòàëüíî âñòàíîâ-
ëåíî, ùî ìàêðîëîêàë³çàö³ÿ ïëàñòè÷íî¿ ïëèííîñòè ïðîÿâëÿºòüñÿ ó âèãëÿä³ ð³ç -
íèõ ìîä àâòîõâèëüîâèõ ïðîöåñ³â. Çàäëÿ ïîÿñíåííÿ ôåíîìåíà àâòîõâèëü ëîêàë³-
çàö³¿ ïëàñòè÷íî¿ ïëèííîñòè ââåäåíî íîâó êâàçè÷àñòèíêó — «àâòîëîêàë³çîí»; 
ìîäåëü óìîæëèâëþº îö³íèòè ïðîñòîðîâ³ òà ÷àñîâ³ ïàðàìåòðè äåôîðìàö³éíî - 
ãî ïðîöåñó.

Êëþ÷îâ³ ñëîâà: ñòîïè, äåôîðìàö³ÿ, ïëàçó÷³ñòü, ñàìîîðãàí³çàö³ÿ, ì³öí³ñòü, ïëàñ-
òè÷í³ñòü, ëîêàë³çàö³ÿ, ðóéíóâàííÿ.




