Martensitic α″-Fe16N2-Type Phase of Non-Stoichiometric Composition: Current Status of Research and Microscopic Statistical-Thermodynamic Model

T. M. Radchenko, O. S. Gatsenko, V. V. Lizunov, and V. A. Tatarenko

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 17.11.2020; final version — 07.12.2020 Download PDF logo PDF

The literature (experimental and theoretical) data on the tetragonality of martensite with interstitial–substitutional alloying elements and vacancies are reviewed and analysed. Special attention is paid to the studying the martensitic α″-Fe16N2-type phase with unique and promising magnetic properties as an alternative to the rare-earth intermetallics or permendur on the world market of the production of permanent magnets. The period since its discovery to the current status of research is covered. A statistical-thermodynamic model of ‘hybrid’ interstitial–substitutional solid solution based on a b.c.t. crystal lattice, where the alloying non-metal constituents (impurity atoms) can occupy both interstices and vacant sites of the host b.c.c.(t.)-lattice, is elaborated. The discrete (atomic-crystalline) lattice structure, the anisotropy of elasticity, and the ‘blocking’ and strain-induced (including ‘size’) effects in the interatomic interactions are taken into account. The model is adapted for the non-stoichiometric phase of Fe–N martensite maximally ordered by analogy with α″-Fe16N2, where nitrogen atoms are in the interstices and at the sites of b.c.t. iron above the Curie point. It is stressed an importance of adequate data on the available (in the literature) temperature- and concentration-dependent microscopic energy parameters of the interactions of atoms and vacancies. The features of varying (viz. non-monotonic decreasing with increasing temperature) the relative concentration of N atoms in the octahedral interstices of b.c.t. Fe, and therefore, the degree of its tetragonality (correlating with this concentration) are elucidated. Within the wide range of varying the total content of introduced N atoms, the ratio of the equilibrium concentration of residual site vacancies to the concentration of thermally activated vacancies in a pure b.c.c. Fe is demonstrated at a fixed temperature.

Keywords: α″-Fe16N2 phase, Fe–N martensite, interstitial–substitutional solid solution, tetragonality, vacancies, atomic ordering, rare-earth-free magnetic materials, permanent magnets.

Citation: T. M. Radchenko, O. S. Gatsenko, V. V. Lizunov, and V. A. Tatarenko, Martensitic α″-Fe16N2-Type Phase of Non-Stoichiometric Composition: Current Status of Research and Microscopic Statistical-Thermodynamic Model, Progress in Physics of Metals, 21, No. 4: 580–618 (2020)

References (122)  
  1. J.-P. Wang, Environment-Friendly Bulk Fe16N2 Permanent Magnet: Review and Prospective, J. Magn. Magn. Mater., 497: 165962 (2020);
  2. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Current Progress and Future Challenges in Rare-Earth-Free Permanent Magnets, Acta Mat., 158: 118 (2018);
  3. J.T. Dreyer, China’s Monopoly on Rare Earth Elements — and Why We Should Care (Philadelphia: Foreign Policy Research Institute: October 7, 2020);
  4. N.A. Mancheri, Chinese Monopoly in Rare Earth Elements: Supply–Demand and Industrial Applications, China Report, 48, No. 4: 449 (2013);
  5. L.H. Lewis and F. Jiménez-Villacorta, Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation, Metall. Mater. Trans. A, 44: 2 (2013);
  6. M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators, JOM, 64: 752 (2012);
  7. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Adv. Mater., 23, No. 7: 821 (2011);
  8. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Diffusivities and Kinetics of Short-Range and Long-Range Orderings in Ni–Fe Permalloys, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  9. T.M. Radchenko and V.A. Tatarenko, Atomic-Ordering Kinetics and Diffusivities in Ni–Fe Permalloy, Defect Diffus. Forum, 273–276: 525 (2008);
  10. V.A. Tatarenko and T.M. Radchenko, The Application of Radiation Diffuse Scattering to the Calculation of Phase Diagrams of F.C.C. Substitutional Alloys, Intermetallics, 11, Nos. 11–12: 1319 (2003);
  11. S.M. Bokoch and V.A. Tatarenko, A Semi-Empirical Parameterization of Interatomic Interactions Based on the Statistical-Thermodynamic Analysis of the Data on Radiation Diffraction and Phase Equilibria in F.C.C.-Ni–Fe Alloys, Solid State Phenom., 138: 303 (2008);
  12. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-Empirical Parameterization of Interatomic Interactions and Kinetics of the Atomic Ordering in Ni–Fe–C Permalloys and Elinvars, Defect Diffus. Forum, 280: 29 (2008);
  13. Т.М. Radchenko and V.А. Tatarenko, Fe–Ni Alloys at High Pressures and Temperatures: Statistical Thermodynamics and Kinetics of the L12 or D019 Atomic Order, Usp. Fiz. Met., 9, No. 1: 1 (2008) (in Ukrainian);
  14. V.A. Tatarenko, T.M. Radchenko, and V.M. Nadutov, Parameters of Interatomic Interaction in a Substitutional Alloy F.C.C. Ni–Fe According to Experimental Data about the Magnetic Characteristics and Equilibrium Values of Intensity of a Diffuse Scattering of Radiations, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003) (in Ukrainian).
  15. R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (New York: Wiley: 2000).
  16. K.H. Jack, The Iron–Nitrogen System: the Preparation and the Crystal Structures of Nitrogen–Austenite (γ) and Nitrogen–Martensite (α′), Proc. R. Soc. London, Ser. A, 208: 200 (1951);
  17. K.H. Jack, The Occurrence and the Crystal Structure of α″-Iron Nitride; a New Type of Interstitial Alloy Formed during the Tempering of Nitrogen–Martensite, Proc. Roy. Soc. London, Ser. A, 208: 216 (1951);
  18. T.K. Kim and M. Takahashi, New Magnetic Material Having Ultrahigh Magnetic Moment, Appl. Phys. Lett., 20, No. 12: 492 (1972);
  19. X. Hang, M. Matsuda, J.T. Held, K.A. Mkhoyan, and J.-P. Wang, Magnetic Structure of Fe16N2 Determined by Polarized Neutron Diffraction on Thin-Film Samples, Phys. Rev. B, 102, No. 10: 104402 (2020);
  20. L. Feng, D. Zhanga, F. Wang, L. Dong, S. Chen, J. Liub, and X. Hui, A New Structure of the Environment-Friendly Material Fe16N2, Chem. Eng. Trans., 61: 1501 (2017);
  21. Y. Sugita, H. Takahashi, M. Komuro, K. Mitsuoka, and A. Sakuma, Magnetic and Mössbauer Studies of Single‐Crystal Fe16N2 and Fe–N Martensite Films Epitaxially Grown by Molecular Beam Epitaxy, J. Appl. Phys., 76, No. 10: 6637 (1994);
  22. N. Ji, V. Lauter, X. Zhang, H. Ambaye, and J.-P. Wang, Strain Induced Giant Magnetism in Epitaxial Fe16N2 Thin Film, Appl. Phys. Lett., 102, No. 7: 072411 (2013);
  23. J. Liu, G. Guo, X. Zhang, F. Zhang, B. Ma, and J.-P. Wang, Synthesis of α″-Fe16N2 Foils with an Ultralow Temperature Coefficient of Coercivity for Rare-Earth-Free Magnets, Acta Mat., 184: 143 (2020);
  24. N. Ji, X. Liu, and J.-P. Wang, Theory of Giant Saturation Magnetization in α″-Fe16N2: Role of Partial Localization in Ferromagnetism of 3d Transition Metals, New J. Phys., 12: 063032 (2010);
  25. J.-P. Wang, N. Ji, X. Liu, Y. Xu, C. Sanchez-Hanke, Y. Wu, F.M.F. de Groot, L.F. Allard, and E. Lara-Curzio, Fabrication of Fe16N2 Films by Sputtering Process and Experimental Investigation of Origin of Giant Saturation Magnetization in Fe16N2, IEEE Trans. Magn., 48, No. 5: 1710 (2012);
  26. S. Bhattacharjee and S.-C. Lee, First-Principles Study of the Complex Magnetism in Fe16N2, Sci. Rep., 9: 8381 (2019);
  27. K.H. Jack, The Synthesis, Structure, and Characterization of α″-Fe16N2, J. Appl. Phys., 76: 6620 (1994);
  28. K.H. Jack, The Synthesis and Characterization of Bulk α″-Fe16N2, J. Alloys Compd., 222, Nos. 1, 2: 160 (1995);
  29. H.A. Wriedt, N.A. Gokcen, and R.H. Nafziger, The Fe–N (Iron–Nitrogen) System, Bull. Alloy Phase Diagrams, 8, 355 (1987);
  30. E.H.D.M. van Voorthuysen, D.O. Boerma, and N.C. Chechenin, Low-Temperature Extension of the Lehrer Diagram and the Iron–Nitrogen Phase Diagram, Metall. Mater. Trans. A, 33: 2593 (2002);
  31. M. Naito, K. Uehara, R. Takeda, Y. Taniyasu, and H. Yamamoto, Growth of Iron Nitride Thin Films by Molecular Beam Epitaxy, J. Crystal Growth, 415: 36 (2015);
  32. S. Grachev, D.M. Borsa, S. Vongtragool, and D.O Boerma, The Growth of Epitaxial Iron Nitrides by Gas Flow Assisted MBE, Surf. Sci., 482–485, Pt. 2: 802 (2001);
  33. T. Weber, L. de Wit, F.W. Saris, and P. Schaaf, Search for Giant Magnetic Moments in Ion-Beam-Synthesized α″-Fe16N2, Thin Solid Films, 279, Nos. 1–2: 216 (1996);
  34. E. Leroy, C.D. Mariadassou, H. Bernas, O. Kaitasov, and R. Krishnan, The Road to Fe16N2 Formation in N+ Implanted 57Fe Enriched Films, Appl. Phys. Let., 67, No. 4: 560 (1995);
  35. K. Nakajima and S. Okamoto, Nitrogen-Implantation-Induced Transformation of Iron to Crystalline Fe16N2 in Epitaxial Iron Films, Appl. Phys. Lett., 54, No. 25: 2536 (1989);
  36. S. Okamoto, O. Kitakami, and Y. Shimada, α″-Fe16N2 Phase Epitaxially Grown by Sputter Beam Method, J. Appl. Phys., 79, No. 4: 5250 (1996);
  37. Z.-Y. Yao, H. Jiang, Z.-K. Liu, D.-D. Huang, F.-G. Qin, S.-C. Zhu, and Y.-X. Sun, J. Magn. Magn. Mater., 177–181, Pt. 2: 1291 (1998);
  38. D.C. Sun, E.Y. Jiang, M.B. Tian, C. Lin, and X.X. Zhang, Epitaxial Single crystal Fe16N2 Films Grown by Facing Targets Sputtering, J. Appl. Phys., 79, No. 4: 5440 (1996);
  39. N. Ji, M.S. Osofsky, V. Lauter, L.F. Allard, X. Li, K.L. Jensen, H. Ambaye, E. Lara-Curzio, and J.-P. Wang, Perpendicular Magnetic Anisotropy and High Spin-Polarization Ratio in Epitaxial Fe–N Thin Films, Phys. Rev. B, 84, No. 24: 245310 (2011);
  40. X. Zhang, K. Nomura, and J.-P. Wang, New Insight on the Mössbauer Spectra for Fe16N2 Thin Films with High Saturation Magnetization, Jap. J. Appl. Phys., 58, No. 12: 120907 (2019);
  41. M.A. Brewer, C.J. Echer, K.M. Krishnan, T. Kobayashi, and A. Nakanishi, Magnetic and Physical Microstructure of Fe16N2 Films Grown Epitaxially on Si(001), J. Appl. Phys., 81, No. 8: 4128 (1997);
  42. H. Takahashi, H. Shoji, and M. Takahashi, Structure and Magnetic Moment of Fe16N2 Sputtered Film, J. Magn. Magn. Mater., 174, Nos. 1–2: 57 (1997);
  43. M. Takahashi, H. Shoji, H. Takahashi, H. Nashi, and T. Wakiyama, Magnetic Moment of α″-Fe16N2 Films, J. Appl. Phys., 76, No. 10: 6642 (1994);
  44. Y.F. Jiang, J.M. Liu, P.K. Suri, G. Kennedy, N.N. Thadhani, D.J. Flannigan, and J.P. Wang, Preparation of an α″-Fe16N2 Magnet via a Ball Milling and Shock Compaction Approach, Adv. Eng. Mat., 18, No. 6: 1009 (2015);
  45. Y. Jiang, V. Dabade, L.F. Allard, E.L.-C., R. James, and J.-P. Wang, Synthesis of α″-Fe16N2 Compound Anisotropic Magnet by the Strained-Wire Method, Phys. Rev. Applied, 6, No. 2: 024013 (2016);
  46. H. Shinno and K. Saito, Effects of Film Thickness on Formation Processes of Fe16N2 in Nitrogen Ion-Implanted Fe Films, Surf. Coat. Technol., 103–104: 129 (1998);
  47. J.M.D. Coey, K. O’Donnell, Q. Qinian, E. Touchais, and K.H. Jack, The Magnetization of Alpha″Fe16N2, J. Phys.: Condens. Matter, 6, No. 4: L23 (1994);
  48. J.M.D. Coey, The Magnetization of Bulk α′Fe16N2, J. Appl. Phys., 76, No. 10: 6632 (1994);
  49. M.Q. Huang, W.E. Wallace, S. Simizu, and S.G.Sankar, Magnetism of α′-FeN Alloys and α″-(Fe16N2) Fe Nitrides, J. Magn. Magn. Mater., 135, No. 2: 226 (1994);
  50. X. Bao and R.M. Metzger, Synthesis and Properties of α″-Fe16N2 in Magnetic Particles, J. Appl. Phys., 75, No. 10: 5870 (1994);
  51. H. Takahashi, M. Komuro, M. Hiratani, and M. Igarashi, Anomalous Hall Resistivities of Single-Crystal Fe16N2 and Fe–N Martensite Films Epitaxially Grown by Molecular Beam Epitaxy, J. Appl. Phys., 84, No. 3: 1493 (1998);
  52. H. Tanaka, S. Nagakura, Y. Nakamura, and Y. Hirotsu, Electron Crystallography Study of Tempered Iron–Nitrogen Martensite and Structure Refinement of Precipitated α″-Fe16N2, Acta Mat., 45, No. 4: 1401 (1997);
  53. Y. Sugita, H. Takahashi, M. Komuro, and M. Igarashi, Magnetic and Electrical Properties of Single‐Phase, Single‐Crystal Fe16N2 Films Epitaxially Grown by Molecular Beam Epitaxy, J. Appl. Phys., 79, No. 8: 5576 (1996);
  54. E. Kita, K. Shibata, Y. Sasaki, M. Kishimoto, and H. Yanagihara, Magnetic Anisotropy in Spherical Fe16N2 Core–Shell Nanoparticles Determined by Torque Measurements, AIP Advances, 7, No. 5: 056212 (2017);
  55. S. Kikkawa, A. Yamada, Y. Masubuchi, and T. Takeda, Fine Fe16N2 Powder Prepared by Low-Temperature Nitridation, Mater. Res. Bull., 43, No. 12: 3352 (2008);
  56. T. Ogawa, Y. Ogata, R. Gallage, N. Kobayashi, N. Hayashi, Y. Kusano, S. Yamamoto, K. Kohara, M. Doi, and M. Takano, Challenge to the Synthesis of α″-Fe16N2 Compound Nanoparticle with High Saturation Magnetization for Rare Earth Free New Permanent Magnetic Material, Appl. Phys. Express, 6, No. 7: 073007 (2013);
  57. T. Kojima, S. Kameoka, M. Mizuguchi, K. Takanashi, and A.-P. Tsai, FeNi and Fe16N2 Magnets Prepared Using Leaching, Mater. Trans., 60, No. 6: 1066 (2019);
  58. J. Liu, G. Guo, F. Zhang, Y. Wu, B. Ma, and J.-P. Wang, Synthesis of α″-Fe16N2 Ribbons with a Porous Structure, Nanoscale Adv., 1, No. 4: 1337 (2019);
  59. Y. Sugita, K. Mitsuoka, M. Komuro, H. Hoshiya, Y. Kozono, and M. Hanazono, Giant Magnetic Moment and Other Magnetic Properties of Epitaxially Grown Fe16N2 Single-Crystal Films, J. Appl. Phys., 70, No. 10: 5977 (1991);
  60. H. Jiang, K. Tao, and H. Li, J. Phys.: Condens. Matter., 6, No. 18: L279 (1994);
  61. I. Fall and J.-M.R. Genin, Mössbauer Spectroscopy Study of the Aging and Tempering of High Nitrogen Quenched Fe–N Alloys: Kinetics of Formation of Fe16N2 Nitride by Interstitial Ordering in Martensite, Metall. Mater. Trans. A, 27: 2160 (1996);
  62. X. Zhang, M. Yang, Y. Jiang, L.F. Allard, and J.-P. Wang, Thermal Stability of Partially Ordered Fe16N2 Film on Non-Magnetic Ag under Layer, J. Appl. Phys., 115, No. 17, 17A767 (2014);
  63. Y. Shinpei, R. Gallage, Y. Ogata, Y. Kusano, N. Kobayashi, T. Ogawa, N. Hayashi, K. Kohara, M. Takahashi, and M. Takano, Quantitative Understanding of Thermal Stability of α″-Fe16N2, Chem. Commun., 49, No. 70: 7708 (2013);
  64. M.H. Han, W.J. Kim, E.K. Lee, H. Kim, S. Lebègue, and J.J Kozak, Theoretical Study of the Microscopic Origin of Magnetocrystalline Anisotropy in Fe16N2 and Its Alloys: Comparison with the Other L10 Alloys, J. Phys.: Condens. Matter., 32, No. 3: 035801 (2020);
  65. N.J. Szymanski, V. Adhikari, M.A. Willard, P. Sarin, D. Gall, and S.V. Khare, Prediction of Improved Magnetization and Stability in Fe16N2 through Alloying, J. Appl. Phys., 126, No. 9: 093903 (2019);
  66. M. Kopcewicz, J. Jagielski, G. Gawlik, and A. Grabias, Role of Alloying Elements in the Stability of Nitrides in Nitrogen-Implanted α-Fe, J. Appl. Phys., 78, No. 2: 1312 (1995);
  67. R. Gupta R, A. Tayal, S.M. Amir, M. Gupta, A. Gupta, M. Horisberger, and J. Stahn, Formation of Iron Nitride Thin Films with Al and Ti Additives, J. Appl. Phys. 111, No. 10: 103520 (2012);
  68. H.Y. Wang and E.Y. Jiang, Enhancement of the thermal stability of Fe16N2 by Ti Addition, J. Phys.: Condens. Matter, 9, No. 13: 2739 (1997);
  69. L. Ke, K.D. Belashchenko, M. van Schilfgaarde, T. Kotani, and V.P. Antropov, Effects of Alloying and Strain on the Magnetic Properties of Fe16N2, Phys. Rev. B, 88, No. 2: 024404 (2013);
  70. Y. Jiang, B. Himmetoglu, M. Cococcioni, and J.-P. Wang, DFT Calculation and Experimental Investigation of Mn Doping Effect in Fe16N2, AIP Adv., 6, No. 5: 056007 (2016);
  71. M. Takahashi, H. Takahashi, H. Nashi, H. Shoji, and T. Wakiyama, M. Kuwabara, Structure and Magnetic Moment of α″-Fe16N2 Compound Films: Effect of Co and H on Phase Formation, J. Appl. Phys., 79, No. 8: 5564 (1996);
  72. Y. Sun, Y.-X. Yao, M.C. Nguyen, C.Z. Wang, K.M. Ho, and V. Antropov, Spatial decomposition of magnetic anisotropy in magnets: Application to doped Fe16N2, Phys. Rev. B, 102, No. 3: 134429 (2020);
  73. I. Khan, S. Park, and J. Hong, Magnetic Properties of Fe16–x(Ta/W)xN2 Ternary Alloy: First Principles and Atomistic Simulations, J. Phys.: Condens. Matter, 32, No. 2: 025801 (2019);
  74. N. Ishiwata, C. Wakabayashi, and H. Urai, Soft Magnetism of High-Nitrogen-Concentration FeTaN Film, J. Appl. Phys., 69, No. 8: 5616 (1991);
  75. K. Nakanishi, O. Shimizu, and S. Yoshida, Magnetic Properties of Fe–X–N (X = Zr, Hf, Nb, Ta) Films, IEEE Translation J. Magn. Jap., 7, No. 2: 128 (1992);
  76. K. Nago, H. Sakakima, and K. Ihara, Microstructures and Magnetic Properties of Fe–(Ta,Nb,Zr)–N Alloy Films, IEEE Translation J. Magn. Jap., 7, No. 2: 119 (1992);
  77. M. Widenmeyer, L. Shlyk, A. Senyshyn, R. Mönig, and R. Niewa, Structural and Magnetic Characterization of Single-Phase Sponge-Like Bulk α″-Fe16N2, Z. Anorg. Allg. Chem., 641, No. 2: 348 (2015);
  78. J.M.D. Coey and P.A.I. Smith, Magnetic Nitrides, J. Magn. Magn. Mater., 200: 404 (1999);
  79. S. Bhattacharyya, Iron Nitride Family at Reduced Dimensions: A Review of Their Synthesis Protocols and Structural and Magnetic Properties, J. Phys. Chem. C, 119, No. 4: 1601 (2015);
  80. V.M. Nadutov, V.A. Tatarenko, and K.L. Tsinman, Statistical-Thermodynamic Analysis of Disorder–Order Structural Phase Transformations in F.C.C.-Fe–N Alloy, Metallofizika, 14, No. 11: 42 (1992) (in Russian).
  81. A.V. Ruban, Self-Trapping of Carbon Atoms in α-Fe during the Martensitic Transformation: A Qualitative Picture from ab initio Calculations, Phys. Rev. B, 90, No. 14: 144106 (2014);
  82. E. Bain, The Nature of Martensite, Trans. AIME, 70, 25 (1924).
  83. G.V. Kurdjumov and G. Sachs, Über den Mechanismus der Stahlhärtung, Z. Phys., 64: 325 (1930) (in German);
  84. Y. Jiang, X. Zhang, A. Al Mehedi, M. Yang, and J.-P. Wang, A Method to Evaluate α″-Fe16N2 Volume Ratio in FeN Bulk Material by XPS, Matter. Res. Express, 2, No. 11: 116103 (2015);
  85. J. Li, W. Yuan, X. Peng, Y. Yang, J. Xu, X. Wang, B. Hong, H. Jin, D. Jin, and H. Ge, AIP Advances, 6, No. 12: 125104 (2016);
  86. N. Ji, L.F. Allard, E. Lara-Curzio, and J.-P. Wang, N site Ordering Effect on Partially Ordered Fe16N2, Appl. Phys. Lett., 98, No. 9: 092506 (2011);
  87. Y. Hayashi and T. Sugeno, Nature of Boron in α-Iron, Acta Metall., 18, No. 6: 693 (1970);
  88. R.B. McLellan, Chemical Metallurgy of Iron and Steel (London: Iron and Steel Institute: 1973), p. 337.
  89. V.N. Bugaev and V.A. Tatarenko, Interaction and Arrangement of Atoms in Interstitial Solid Solutions Based on Close-Packed Metals (Kiev: Naukova Dumka: 1989) (in Russian).
  90. V.G. Gavriljuk, V.M. Nadutov, and K. Ullakko, Low Temperature Ageing of Fe–N Martensite, Scr. Met. Mater., 25, No. 4: 905 (1991);
  91. V.A. Tatarenko and K.L. Tsinman, Temperature- and Concentration-Dependent Tetragonality of a ‘Hybrid’ Binary Solution in Which Non-Metal Atoms Can Occupy Both Interstices and Sites of the B.C.T. Metal Lattice with Vacancies, Metallofiz. Noveishie Tekhnol., 18, No. 10: 32 (1996) (in Russian).
  92. A.G. Khachaturyan, Theory of Structural Transformations in Solids (Mineola, New York: Dover Publications, Inc.: 2008).
  93. V.A. Starenchenko, O.D. Pantyukhova, S.V. Starenchenko, and S.N. Kolupaeva, Mechanisms of Deformation-Induced Destruction of Long-Range Order Related to the Generation of Antiphase Boundaries and Point Defects in Alloys with the L12 Superstructure, Phys. Met. Metallogr., 91, No. 1: 85 (2001).
  94. R.B. McLellan, The Thermodynamics of Hybrid Binary Interstitial–Substitutional Solid Solutions, J. Phys. Chem. Solids, 50, No. 1: 49 (1989);
  95. A. Udyansky, J. von Pezold, A. Dick, and J. Neugebauer, Orientational Ordering of Interstitial Atoms and Martensite Formation in Dilute Fe-Based Solid Solutions, Phys. Rev. B, 83, No. 18: 184112 (2011);
  96. A.G. Khachaturyan and G.A. Shatalov, Phase Transformation Associated with Radiation Defects, Fiz. Tverdogo Tela, 12, No. 10: 2969 (1970) (in Russian).
  97. M.A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Eds. (Berlin–Heidelberg: Springer: 1996);
  98. V.A. Tatarenko and C.L. Tsinman, Strain-Induced and ‘Blocking’ Effects in Statistical Thermodynamics of ‘Orientationally’ Ordered Interstitial Solid Solutions, Physics of Real Crystals (Ed. V.G. Baryakhtar) (Kiev: Naukova Dumka: 1992), p. 244 (in Russian).
  99. V.M. Nadutov, V.A. Tatarenko, C.L. Tsynman, and K. Ullakko, Interatomic Interaction and Atomic Ordering in Fe–N Martensite, Metallofiz. Noveishie Tekhnol., 16, No. 8: 34 (1994).
  100. V.B. Molodkin, V.A. Tatarenko, and C.L. Tsinman, Influence of the Temperature Dependence of Static Displacements of Metal Ions on Diffraction Effects in an Ordered Nonstoichiometric Interstitial Phase Based on a B.C.C. Metal, Metallofizika, 15, No. 9: 26 (1993) (in Russian).
  101. L.A. Girifalco, Statistical Physics of Materials (New York: John Wiley and Sons: 1973).
  102. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Semi-Empirical Parameterization of Interatomic Interactions, Which is Based on Statistical-Thermodynamic Analysis of Data on Phase Equilibriums in B.C.C.-Fe–Co Alloy. I. Primary Ordering, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010) (in Ukrainian).
  103. M.A. Krivoglaz, Diffuse Scattering of X-Rays and Neutrons by Fluctuations (Berlin–Heidelberg: Springer: 1996).
  104. B.N. Brockhouse, H.E. Abou-Helal, and E.D. Hellman, Lattice Vibrations in Iron at 296 K, Solid State Commun., 5, No. 4: 211 (1967);
  105. R. Kohlhaas, Ph. Dünner, and N. Schmitz-Pranghe, Uber die Temperaturabhangigkeit der Gitterparameter von Eisen, Kobalt und Nickel im Bereich Hoher Temperaturen, Z. Angew. Phys., 23, No. 4: 245 (1967) (in German).
  106. J.A. Rayne and B.S. Chandrasekhar, Elastic Constants of Iron from 4.2 to 300 K, Phys. Rev., 122, No. 6: 1714 (1961);
  107. D.J. Dever, Temperature Dependence of the Elastic Constants in α-Iron Single Crystals: Relationship to Spin Order and Diffusion Anomalies, J. Appl. Phys., 43, No. 8: 3293 (1972);
  108. L. Cheng, A. Boöttger, Th.H. de Keijser, and E.J. Mittemeijer, Lattice Parameters of Iron–Carbon and Iron–Nitrogen Martensites and Austenites, Scr. Met. Mater., 24, No. 3: 509 (1990);
  109. G.M. Stoica, A.D. Stoica, M.K. Miller, and D. Ma, Temperature-Dependent Elastic Anisotropy and Mesoscale Deformation in a Nanostructured Ferritic Alloy, Nature Commun., 5: 1 (2014);
  110. Z.S. Basinski, W. Hume-Rothery, and A.L. Sutton, The Lattice Expansion of Iron, Proc. R. Soc. Lond. A, 229: 459 (1955);
  111. W.G. Wolfer, Fundamental Properties of Defects in Metals, Comprehensive Nuclear Materials (Eds. R.J.M. Konings, T.R. Allen, R.E. Stoller, and Sh. Yamanaka) (Amsterdam–Kidlington–Oxford–Waltham: Elsevier Science: 2012), p. 1;
  112. T.-S. Kuan, A. Warshel, and O. Schnepp, Intermolecular Potentials for N2 Molecules and the Lattice Vibrations of Solid α-N2, J. Chem. Phys., 52, No. 6: 3012 (1970);
  113. W.A. Harrison, Pseudopotentials in the Theory of Metals (New York: W.A. Benjamin Inc.: 1966).
  114. W.A. Harrison, Solid State Theory (New York: Dover Publ. Inc.: 1979).
  115. M.S. Blanter and A.G. Khachaturyan, Stress-Induced Interaction of Pairs of Point Defects in BCC Solutions, Met. Trans. A, 9, No. 6: 753 (1978);
  116. E.S. Machlin, Pair Potential Model of Intermetallic Phases—I, Acta Met., 22, No. 1: 95 (1974);
  117. L. Brewer, Prediction of High Temperature Metallic Phase Diagrams, High-Strength Materials (Ed. V.F. Zackay) (New York: John Wiley and Sons: 1965), Ch. 2, p. 12.
  118. L. Brewer, The Cohesive Energies of the Elements (Rep. LBL-3720, Revised May 4, 1977) (Berkeley, CA, USA: Lawrence Berkeley Laboratory: 1977);
  119. V.G. Weizer and L.A. Girifalco, Vacancy–Vacancy Interaction in Copper, Phys. Rev., 120, No. 3: 837 (1960);
  120. R. Yamamoto and M.J. Doyama, The Interactions between Vacancies and Impurities in Metals by the Pseudopotential Method, J. Phys. F: Met. Phys., 3, No. 8: 1524 (1973);
  121. A.A. Smirnov, Theory of Vacancies in Metals and Alloys and Its Applications to Substitutional Alloys (Kiev: Naukova Dumka: 1993) (in Russian).
  122. V.N. Bugaev, V.A. Tatarenko, and C.L. Tsinman, A Content of Site Vacancies in Binary Interstitial Alloys Based on F.C.C. Iron, Metallofiz. Noveishie Tekhnol., 17, No. 2: 32 (1995) (in Russian).
SCImago Journal & Country Rank