Determination of the Boundaries of Plastic Zone of Metal Deformation During the Cutting

M. O. Kurin

National Aerospace University ‘Kharkiv Aviation Institute’, 17 Chkalov Str., UA-61070, Kharkiv, Ukraine

Received 09.12.2019; final version — 18.05.2020 Download PDF logo PDF

Abstract
The main objective of this work is to analyse the problem of determining the boundary of elastoplastic zone with various methods of machining parts by cutting. The structure of complex theoretical and experimental studies of energy–power parameters of the technological processes is considered. The method for calculating the processes of plastic deformation of metals based on a closed set of equations of continuum mechanics is proposed for the theoretical study of energy–power parameters of the technological processes. The expressions, which make possible the reproduction of the spatial pattern of the strain distribution within the metal at the diamond smoothing and grinding, are obtained. This allows visualizing the mechanism of the deformation and simplifying the analysis of the deformed state of the material. Functional relationship between the power of the deformation and parameters of the machining conditions at the diamond smoothing and grinding is established. Various methods for determining the cutting forces during machining with chip removal as well as approaches to determining deflected mode of a material are considered. A method for express calculation of cutting forces using well-known engineering techniques is proposed. The experimental and calculated data on determination of the sizes of plastically deformable zone of difficult-to-cut materials are analysed. The mechanism of inhibition of dislocations and energy conversion during deformation is considered in detail. As a result, a dislocation–kinetic approach is developed, based on the concept of dislocation as a quasi-particle of a strain quantum. Using the dislocation–kinetic approach, the mathematical model is developed, which allows us to calculate a magnitude of the zone of leading cold hardening that is confirmed by comparison with experimental data. The Starkov’s model is improved; the physical meaning of coefficient in formulas for calculating boundaries of cold-hardening zones is explained. A new similarity criterion is introduced, which relates dissipation of plastic strain energy and rate of rearranging of temperature field.

Keywords: elastoplastic zone, cutting forces, dislocation–kinetic approach, similarity criterion, dissipation of energy.

Citation: M. O. Kurin, Determination of the Boundaries of Plastic Zone of Metal Deformation During the Cutting, Progress in Physics of Metals, 21, No. 2: 249–273 (2020)


References (40)  
  1. M.O. Kurin, Metallofiz. Noveishie Tekhnol., 40, No. 7: 801 (2018). https://doi.org/10.15407/mfint.40.07.0859
  2. L.B. Zuev, S.A. Barannikova, and A.G. Lunev, Prog. Phys. Met., 19, No. 4: 379 (2018). https://doi.org/10.15407/ufm.19.04.379
  3. Yu.V. Milman, S.I. Chugunova, I.V. Goncharova, and А.А. Golubenko, Prog. Phys. Met., 19, No. 3: 271 (2018). https://doi.org/10.15407/ufm.19.03.271
  4. A.I. Dolmatov, S.V. Sergeev, M.O. Kurin, V.V. Voronko, and T.V. Loza, Metallofiz. Noveishie Tekhnol., 37, No. 7: 871 (2015). https://doi.org/10.15407/mfint.37.07.0871
  5. Yu.N. Alekseev, Vvedenie v Teoriyu Obrabotki Metallov Davleniem, Prokatkoy i Rezaniem [Introduction to the Theory of Metal Processing via the Pressure, Rolling and Cutting] (Kharkov: Izd-vo KhGU, 1969) (in Russian).
  6. A.A. Kabatov, Issues of Design and Manufacture of Flying Vehicles, No. 1 (73): 67 (2013) (in Russian).
  7. A.A. Kabatov, Tekhnologiya Almaznogo Vyglazhivaniya Detaley Aviatsionnykh Dvigateley i Agregatov [Technology for Diamond Smoothing of Aircraft Engine Parts and Units] (Thesis of Disser. for PhD) (Kharkiv: National Aerospace University ‘Kharkiv Aviation Institute’: 2014) (in Russian).
  8. A.I. Dolmatov, A.A. Kabatov, and M.A. Kurin, Aerospace Technic and Technology, 100: 12 (2013).
  9. A.I. Dolmatov, A.A. Kabatov, and M.A. Kurin, J. Mechanical Engineering NTUU ‘Kyiv Polytechnic Institute’, 67: 186 (2013) (in Russian).
  10. A.I. Dolmatov, A.A. Kabatov, and M.A. Kurin, Metallofiz. Noveishie Tekhnol., 35: 1407 (2013).
  11. Yu.N. Alekseev, V.K. Borisevich, and P.I. Kovalenko, Impul’snaya Obrabotka Metallov Davleniyem, 5: 112 (1975).
  12. A.G. Odintsov, Uprochneniye i Otdelka Detaley Poverkhnostnym Plasticheskim Deformirovaniyem [Hardening and Finishing of Parts by Surface Plastic Deformation] (Moscow: Mashinostroyeniye: 1987) (in Russian).
  13. S.M. Nizhnik, Tekhnologiya Shlifovaniya Detaley Aviatsionnykh Dvigateley s Uchetom Uvelicheniya Aktivnoy Poverkhnosti Abrazivnogo Zerna [Grinding Technology of Aviation Engine Parts, Taking into Account the Increase of the Active Surface of Abrasive Grain] (Thesis of Disser. for PhD) (Kharkiv: National Aerospace University ‘Kharkiv Aviation Institute’: 2018) (in Russian).
  14. M.O. Kurin and M.V. Surdu, Metallofiz. Noveishie Tekhnol., 39, No. 3: 401 (2017) (in Ukrainian). https://doi.org/10.15407/mfint.39.03.0401
  15. K.L. Johnson, Contact Mechanics (Cambridge University Press: 1985). https://doi.org/10.1017/CBO9781139171731
  16. V.K. Starkov, Fizika i Optimizatsiya Rezaniya Materialov [Physics and Optimization of Cutting materials] (Moscow: Mashinostroenie: 2009) (in Russian).
  17. A.M. Rosenberg and A.N. Eremin, Elementy Teorii Protsessa Rezki Metalla [Elements of the Theory of Metal Cutting Process] (Moscow: Mashgiz: 1956) (in Russian).
  18. N.N. Zorev, Issledovanie Elementov Mekhaniki Protsessa Rezaniya [The Study of Elements of the Mechanics of the Cutting Process] (Moscow: Mashgiz: 1952) (in Russian).
  19. A.A. Bondarev, Issledovanie Vliyaniya Operezhayushchey Plasticheskoy Deformatsii na Effektivnost’ Protsessa Rezaniya Konstruktsionnykh Staley [Study of the Influence of Leading Plastic Deformation on the Effectiveness of the Cutting Process of Structural Steels] (Thesis of Disser. for PhD) (Volgograd: Volgograd State Technical University: 2016) (in Russian).
  20. A.A. Bondarev, Y.N. Oteniy, Yu.L. Chigirinsky, Yu.N. Polyanchikov, D.V. Krainev, and D.V. Pronichev, Izvestiya VSTU. Ser. Advanced Technology in Machine Building, 173: 7 (2015) (in Russian).
  21. S. Klein, S. Weber, and W. Theisen, J. Mater. Sci., 50: 3586 (2015). https://doi.org/10.1007/s10853-015-8919-y
  22. S.O. Firstov and T.G. Rogul, Metallofiz. Noveishie Tekhnol., 39, No. 1: 33 (2017) (in Russian). https://doi.org/10.15407/mfint.39.01.0033
  23. A.H. Cottrell, A. Seeger, and J.L. Amorós, Deformation and Flow of Solids / Verformung und Fliessen des Festkörpers. International Union of Theoretical and Applied Mechanics / Internationale Union für Theoretische und Angewandte Mechanik (Ed. R. Grammel) (Berlin–Heidelberg: Springer: 1956), pp. 33–52. https://doi.org/10.1007/978-3-642-48236-6_5
  24. A. Seeger, Kristallplastizitat [Crystal Plasticity] (Berlin: Springer-Verlag: 1958) (in German). https://doi.org/10.1007/978-3-642-45890-3_1
  25. H. Conrad, Acta Met., 6, No. 5: 339 (1958). https://doi.org/10.1016/0001-6160(58)90071-3
  26. H. Conrad, Tekuchest i Plasticheskoe Techenie OTsK-Metallov pri Nizkikh Temperaturakh. Struktura i Mekhanicheskie Svoystva Metallov [Yield and Plastic Flow for B.C.C. Metals at Low Temperatures. Structure and Mechanical Properties of Metals] (Moscow: Metallurgiya: 1967) (Russian translation).
  27. Yu.V. Mil’man and V.I. Trefilov, O Fizicheskoy Prirode Temperaturnoy Zavisimosti Predela Tekuchesti. Mekhanizm Razrusheniya Metallov [On the Physical Nature of the Temperature Dependence of Yield Stress. Metal Fracture Mechanism] (Kiev: Naukova Dumka: 1966) (in Russian).
  28. V.I. Trefilov, Yu.V. Milman, and S.A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Bases of the Strength of Refractory Metals] (Kiev: Naukova Dumka: 1975) (in Russian).
  29. P. Haasen, Acta Met., 5, No. 10: 598 (1957). https://doi.org/10.1016/0001-6160(57)90129-3
  30. P. Haasen, Mekhanicheskie Svoistva Tverdykh Rastvorov i Intermetallicheskikh Soedineniy. Fizicheskoe Metallovedenie [Mechanical Properties of Solid Solutions and Intermetallic Compounds. Physical Metallurgy] (Eds. R.W. Cahn and P. Haasen] (Moscow: Metallurgiya: 1987) (Russian translation).
  31. V.I. Al’shits and V.L. Indenbom, Sov. Phys. Usp., 18, No. 1: 1 (1975). https://doi.org/10.1070/PU1975v018n01ABEH004689
  32. L.I. Sedov, Metody Podobiya i Razmernosti v Mekhanike [Similarity and Dimension Methods in Mechanics] (Moscow: Nauka: 1977) (in Russian).
  33. T.E. Konstantinova, Fizika i Tekhnika Vysokikh Davleniy, 19: 7 (2009) (in Russian).
  34. Ya.E. Beygelzimer, Fizika i Tekhnika Vysokikh Davleniy, 18: 36 (2008) (in Russian).
  35. I.V. Savel’yev, Kurs Obshchey Fiziki, Mekhanika. Molekulyarnaya Fizika [Course in General Physics, Mechanics. Molecular Physics] (Moscow: Nauka: 1982) (in Russian).
  36. S.V. Izmaylov, Kurs Ehlektrodinamiki [The Course of Electrodynamics] (Moscow: Gos. Uch.-Ped. Izd-vo Min. Prosv. RSFSR: 1962) (in Russian).
  37. D.G. Verbilo, Ehlektronnaya Mikroskopiya i Prochnost’ Materialov. Ser.: Fizicheskoye Materialovedeniye, Struktura i Svoystva Materialov, 18: 104 (2012) (in Russian).
  38. Frank A. McClintock, and Ali S. Argon, Mechanical Behavior of Materials (Addison-Wesley Pub. Co.: 1966).
  39. R.W.K. Honeycombe, The Plastic Deformation of Metals (London: Hodder & Stoughton General Division: 1968).
  40. V.L. Indenbom and A.N. Orlov, Sov. Phys. Usp., 5, No. 2: 272 (1962) https://doi.org/10.1070/PU1962v005n02ABEH003412