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DETERMINATION OF THE BOUNDARIES 
OF PLASTIC ZONE OF METAL 
DEFORMATION DURING THE CUTTING

The main objective of this work is to analyse the problem of determining the bound-
ary of elastoplastic zone with various methods of machining parts by cutting. The 
structure of complex theoretical and experimental studies of energy–power param-
eters of the technological processes is considered. The method for calculating the 
processes of plastic deformation of metals based on a closed set of equations of con-
tinuum mechanics is proposed for the theoretical study of energy–power parameters 
of the technological processes. The expressions, which make possible the reproduc-
tion of the spatial pattern of the strain distribution within the metal at the diamond 
smoothing and grinding, are obtained. This allows visualizing the mechanism of the 
deformation and simplifying the analysis of the deformed state of the material. 
Functional relationship between the power of the deformation and parameters of the 
machining conditions at the diamond smoothing and grinding is established. Vari-
ous methods for determining the cutting forces during machining with chip re-
moval as well as approaches to determining deflected mode of a material are consid-
ered. A method for express calculation of cutting forces using well-known engineer-
ing techniques is proposed. The experimental and calculated data on determination 
of the sizes of plastically deformable zone of difficult-to-cut materials are analysed. 
The mechanism of inhibition of dislocations and energy conversion during deforma-
tion is considered in detail. As a result, a dislocation–kinetic approach is developed, 
based on the concept of dislocation as a quasi-particle of a strain quantum. Using 
the dislocation–kinetic approach, the mathematical model is developed, which al-
lows us to calculate a magnitude of the zone of leading cold hardening that is con-
firmed by comparison with experimental data. The Starkov’s model is improved; the 
physical meaning of coefficient in formulas for calculating boundaries of cold-hard-
ening zones is explained. A new similarity criterion is introduced, which relates 
dissipation of plastic strain energy and rate of rearranging of temperature field.

Keywords: elastoplastic zone, cutting forces, dislocation–kinetic approach, similar-
ity criterion, dissipation of energy.



250 ISSN 1608-1021. Prog. Phys. Met., 2020, Vol. 21, No. 2

M.O. Kurin

1. Introduction 

The determination of dimensions of elastoplastic zone of a deformed 
metal during mechanical processing and after its completion is of great 
practical interest both for predicting changes in the physical-mechanical 
properties of the surface layer of workpiece and for constructing an 
integrated picture of the plastic deformation of a metal flowing around 
a cutting wedge or abrasive grain. In our recently published article [1], 
we pointed out that the key and open issue of the theory developed 
based on the hyperbole method is the mechanism for determining the 
coordinates of boundaries region the onset of plastic metal flow.

The paper [2] has indicated that principal characteristic of localized 
plastic-flow development known as the elastoplastic invariant of defor-
mation. It is investigated for several different metals. As shown, the 
distribution of the experimentally obtained values of the invariant can 
be described by the normal distribution low. As established by the au-
thors, the principal characteristics of autowave processes of localized 
plasticity development, for instance, the rate and dispersion, can be 
calculated. It is also possible to calculate the relations between the scales 
of localized plasticity development as well as the dependence of autowave 
length on the structure characteristics of metals. In another review [3], 
the development of techniques for determining the plasticity of materi-
als by the indentation is considered with an introduction of a new plas-
ticity characteristic. This new plasticity characteristic is easily deter-
mined by standard determination of hardness by the diamond pyramidal 
indenters at constant load; thus, the indentation have been proposed for 
a simple method for determination of the complex of mechanical proper-
ties of materials in a wide temperature range using a sample in the form 
of a metallographic specimen. 

The investigation of strain hardening was also in the scope of atten-
tion of the authors in Ref. [4], where the authors considered the strain 
hardening of the metal surface during jet abrasive machining. The func-
tional dependences depth of hardened layer and cold-hardening degree 
on the technological parameters of jet abrasive are studied.

The determination of the boundaries of the elastic-plastic zone is 
going to finish the construction of a complete and decidable theory of 
the process of metal deformation during cutting, covering all processes 
and related phenomena of the subject area under consideration. The 
theory development taking into account the above requirements will be 
aimed at solving problems related to formation of the surface layer dur-
ing various types of machining, calculating the energy–power charac-
teristics of various processing methods, the kinematics of metal flow 
during deformation, the formation of a dislocation substructure, etc.
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2. Analysis of the Deformed State of Material of a Part

2.1. Structure of Investigation of Energy–Power 
Parameters of Machining Processes

It is necessary to develop mathematical models that reflect relationship 
of the functional characteristics process with technological parameters 
of processing modes to predict effectively the energy–power character-
istics of various types of machining by pressure, rolling, or cutting. The 
correct construction of a model is possible to be provided if a structural 
logical scheme is developed, which defines methods and sequence of theo-
re tical and experimental researchers. The most suitable for calculating 
processes of plastic deformation are methods based on a closed system 
equations of continuum mechanics [5–7]. In this case, the deformable 
metal is considered as an idealized continuous medium with averaged 
mechanical properties of a real metal. 

A theoretical analysis of the majority of technological processes 
along with the conducted experiments allows us to determine the nature 
of dependence velocity of particles of plastically deformable metal on 
coordinates. The velocity of particles can be represented through a ve-
locity vector (cf. with Ref. [5]): 
 V = υx i + υy j +  υz k. (1)

The law constancy of a volume during the deformation is expressed 
by the continuity equation [5]:
 divV = 0. (2)

Using Eqs. (1) and (2), we can determine the form of functional de-
pendence of speed on coordinates. Thus, the particles velocity field of 
material is determined, which makes it possible to calculate the strain 
rates and their intensity using the formulas:
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where q1, q2, and q3 are orthogonal curvilinear coordinates.
In this case, the coupling equations hold:

x = x (q1, q2, q3), y = y (q1, q2, q3), z = z(q1, q2, q3);
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here, Hk are Lamé parameters.

ISSN 1608-1021. Usp. Fiz. Met., 2020, Vol. 21, No. 2 251



252 ISSN 1608-1021. Prog. Phys. Met., 2020, Vol. 21, No. 2

M.O. Kurin

Then, it is necessary to determine components of deformation to 
find the energy–power process parameters,

 
11 11 22 22, ,dt dtε = ε ε = ε∫ ∫

and deformation intensity,
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An important characteristic of the machining processes is work of 
deformation, which allows us to determine the power parameters. The 
total work of deformation is determined by integrating elementary work 
over volume v:
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Two functions were introduced in Ref. [5]. The first is called a ve-
locity function: 
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Part of Eq. (5) expresses the energy dissipation function: 
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The speed function is a work aimed at increasing kinetic energy of 

elementary volume of metal in deformation process. The energy dissipa-
tion function is that part of the work contributes to an own deformation 
of the material. Taking into account Eqs. (6) and (7), we rewrite Eq. (5) 
in the following form: 
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If deformation is carried out at a low speed, then, velocity function 
has a sufficiently small value in comparison with the energy dissipation 
function and can be neglected. In this case, the work of deformation will 
be determined through the function of energy dissipation:

 

.
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 (9)

The work of deformation for elementary volume metal assigned to 
octahedral sites has the following form: 

 oct oct3 ,dA dvdt= τ γ  (10)

where τoct is a shear stress on the octahedral site, i.e. platform, inclined 
to the main axes; γoct is an octahedral strain rate. The octahedral stress 
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relates to the stress intensity as 

 oct3 2 .
i

τ = σ
 (11)

The equation relating octahedral strain rate to the strain rate inten-
sity has form 

 
oct

1
.

2
i

γ = ε
 (12)

Substituting Eqs. (11) and (12) into Eq. (10) and integrating the 
latter over volume and time, we obtain: 
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Comparing Eqs. (9) and (13), we can find that 

 E = σiεi. (14)

Thus, it is possible to determine the field of stresses, strains, and 
energy–power parameters of process using the basic laws of plastic de-
formation and the equations of continuum mechanics if we know the 
particles velocity components of deformable metal during mechanical 
processing.

2.2. Theoretical Study of the Deformed State 
of a Part Material during the Diamond Smoothing

Theoretical investigation of the deformed state of a part material dur-
ing diamond smoothing was carried out in a cylindrical coordinate sys-
tem under the assumption of plastic contact conditions between a hard 
spherical indenter and deformable half-space. The basics results of theo-
retical researchers are presented in Refs. [7–9]. We were able to obtain 
the field of the metal flow velocity in deformation zone based on the 
general equations of continuum mechanics, using structural logic dia-
gram presented in Ref. [6] for analysing deformed state of part mate-
rial during the smoothing [9, 10]: 
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here, R is the indenter radius; t and tk are the current time and the 
time of deformation of the treated surface area, respectfully; A RH H R H= − −  

2arctg( 2 ( ));A RH H R H= − −  H is indenter penetration depth; S is 
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the longitudinal feed rate; r and z are coordinates of a point in a cylin-
drical coordinate system; k is the coefficient of proportionality.

The velocity field was described based on the following assump-
tions:

(i) the deformation propagation depth is linearly related to the ra-
dius of contact zone h ≈ kl, where k is coefficient of proportionality, l is 
size of indenter penetration zone in the radial direction;

(ii) the propagation zone of deformation in the radial direction is 
determined by the equality b = 2l;

(iii) the tangential component of velocity is zero taking into account 
axial symmetry and absence of twisting and drops (Vθ = 0);

(iv) the vertical component of velocity (Vz) can be represented as a 
product of two functions, each of which is a function of only one argu-
ment: Vz = f (r) ϕ (z), where f (r) is function designating the law of change 
motion metal particles along the r coordinate, which is determined by 
shape tool, zone distribution of deformations, and shape of the scallop 
around zone of deformation.

This dependence according to [11] can be represented as: 
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where V0 is an indenter speed, r is a point coordinate. Since in practice, 
traditionally with diamond smoothing, the depth of penetration of a 
spherical tip H < 0.3R, we can use for calculations the equality 2 ,l RH≈
where H = f (t). In our case, l = S tk, where S is the longitudinal feed rate.

Function ϕ (z) determines the attenuation law by the z coordinate. 
According to Ref. [12], this function can be written as 
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We will find velocity of material points along the axis z: 
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Taking into account all the above, the dependence (16) takes the fol-
lowing form: 
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After substituting Eqs. (17) and (19) into formula for Vz, we finally 
obtain expression for the vertical component of velocity: 
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The component of velocity field of metal flow in radial direction Vr 
(formula (15)) was determined from the continuity equation (conditions 
of constant volume).

2.3. Investigation of Power–Strength 
Parameters of the Grinding Process

The study of the energy–power characteristics of the grinding process 
was carried out based on the hypothesis of a generalized cutter with a 
continuous cutting edge. Part of the abrasive grains acting over the 
bond identified with rotational ellipsoids. The essence of the proposed 
methodology is based on the conceptual model of abrasive grain that it 
is the equivalent that reflects all the cutting properties of the abrasive 
wheel. Establishing a direct correlation makes it possible to find the 
value of the forward angle of the equivalent grain γ, which is quantita-
tively related to the coefficient of the reference curve: 

 
1

tg | | .γ =
ν

 (21)

The cutting properties of the abrasive tool do not depend on the 
values of the grinding mode parameters, and γ is meant to be a constant 
that quantitatively expresses the cutting properties of a particular 
brand of abrasive tool. 

Theoretical research has resulted in analytical dependences, not only 
describing the metal flow in the deformation zone, but also being suit-
able for calculating the energy–power characteristics of the process, 
without the use of a large array of empirical dependences that do not 
fully reflect the physics of the process and are limited by the narrow 
scope of experimental research. 

Based on the velocity field, which are given by parametric equations 
(22) [1, 13]
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where a is a hyperbole parameter, semi-major axis, e is an eccentricity 
of hyperbola, α is an angle of rotation (α = − γ/2, γ is cutting angle), V0 
is a cutting speed, and coordinate x0 determines the plastic flow begin-
ning, dependences were obtained for the calculation of deformation con-
stituents, strain rates and their intensities:

 
xx xx

e dt= ε∫ , 
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These dependences make it possible to calculate the energy dissipa-
tion function, which can be expressed through the intensity of stresses 
and the strain rates by the formula 

 E = σi εi. (26)

To determine the deformation power, the energy dissipation func-
tion must be integrated over volume: 

 

,
v

N Edv= ∫∫∫
 (27)

where σi is the intensity of stresses, εi is the intensity of strain rates. 
The stress intensity for different deformed media is a complex func-

tion of the strain intensity, strain rate, temperature, time, and other 
parameters. 

Fig. 1. The field of par-
ticle velocity during flow 
around an abrasive grain 
[13]
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Metals and alloys are a group of materials that are strengthened 
during plastic deformation. The stress intensity is a function of the 
strain intensity only: 
 σi = σm εi

n, (28)

where n is the index of strain hardening; ei is intensity of deformation; 
σm is the yield strength.

An example is considered: the operation of grinding a part of an al-
loy BT3-1, the speed of rotation of the abrasive wheel Vwh = 30 m/s, the 
speed of rotation of the workpiece Vw = 30 m/min, cutting depth t = 
= 0.02 · 10–3 m. Parts were machined with an abrasive wheel 63C40ÑÌ2Ê 
with geometry γ = α = 101.6 degrees. The velocity field of particle dis-
placements for this one is shown Fig. 1.

The calculation of the deformation power according to the above 
algorithm gives the following result: N ≈ 9.93 W. Below, there are the 
experimental investigation of the total cutting forces, it which convert-
ing to the single grain power give good agreement with theoretical cal-
culations.

Therefore, sequential determination of main parameters during 
plastic deformation of metal based on the initial velocity field allows in 
long run to reach an important energy–power characteristic of any 
processing process, namely, the work of plastic deformation [14]. As 
another important advantage of method, it should be noted that flow 
kinematics can be described at any strain rates and wedge angles, which 
along with the application area, allows us to conclude that proposed 
research technique is universal. The influence of strain rate, angle 
wedge, characteristics of processed material and other parameters of 
processing modes will affect shape and boundary of elastoplastic zone. 
It is known, as we move away from wedge, which is perturbation source 
of the deformation waves, the plastic metal flow rates decay to zero in 
region of unstrained volumes. Thus, the mechanism, determining coor-
dinate, i.e., the beginning metal plastic flow, remains an open question 
in the developed theory. It can be concluded that determining nature of 
attenuation rate of plastic flow metal, as well as the boundaries of zone 
of elastoplastic deformation is a key and rather complex issue requiring 
additional research.

3. Theoretical Investigation 
of the Stress–Strain State in the Cutting Zone

To determine the stress–strain state in an elastic half-space with a boun-
dary half-plane arising under the action of normal and tangential forces 
applied in a closed region, the classical approach proposed by Boussinesq 
and Cerruti using the theory of potential and the well-known solution of 
the problem of elasticity is commonly applied [15, 16]. As known, solu-
tion of most applied problems via the classical approach, presents cer-
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tain difficulties and shortcomings. First of all, the solution obtained by 
Boussinesq gives satisfactory results for the elastic region of deforma-
tion the metal; dependence (29) gives overestimated values:

 
2 sin ( )

,
P

h

α
σ =

π
 (29)

where α is the angle between the direction of action of the force P (| P | = P) 
and the radius-vector of the point h (| h | = h) in question.

One of the significant problems is the preliminary determination 
the components of cutting forces functionally related the stresses acting 
in the cutting region. In case of the study of kinematics plastic flow of 
deformed material in the cutting zone and determination of energy–
power descriptions of process, we have to define the field of speeds as 
the basic data. For that construction, in turn necessary, boundary con-
ditions are needed in the form of coordinates the plane beginning of the 
plastic flow of the metal, which directly depends on the size of the elas-
toplastic zone. On this account, again the preliminary calculation of 
cutting forces is nevertheless needed for the solution of the objectives. 
In our opinion, the most rational method for solving tasks is an express 
calculation of cutting forces using well-known engineering methods for 
calculating projections of cutting forces. It is obvious that the use of 
empirical dependences to calculate the cutting forces is quite laborious 
and requires a significant array of empirical research on each material. 
For this reason, most researchers conducted surveys to establish theo-
retical equations linking the components of the cutting forces with 
physical-mechanical characteristics of the processed material, geometri-
cal parameters of the tool and the dimensions of cut layer [17, 18]. 
Among the whole variety of analytical dependences obtained by various 
authors, the Zorev’s equations [18] give the most complete account of 
the deformation mechanism during cutting and high accuracy. These 
equations were obtained based on the hypothesis of equality of shear 
stresses during cutting and compression as well as tension under equal 
deformations, and the Rosenberg methodology [17], based on hypothesis 
of the equality specific work of plastic deformation with equality of 
deformations. Zorev’s equations [18] showed a good coincidence with 
the experimental values of cutting forces. Both methods give satisfac-
tory results, which are confirmed by numerous experimental researches. 
In addition, the choice of method is aimed at determining only the 
boundaries of the region of the stress–strain state, so, you can choose 
one of the known methods, which is most convenient for the researcher. 
It depends on the available data very often. It is also possible to use 
empirical dependences to calculate the sought-for components.

In Ref. [16], author obtained formulas for determining normal 
stress σz acting on the side of cutting edge of the cutter and maximum 



ISSN 1608-1021. Usp. Fiz. Met., 2020, Vol. 21, No. 2 259

The Boundaries of Plastic Zone of Metal Deformation During the Cutting

pressure on the back surface of the tool σy:
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where B is the width of the plates; γ and α are front and back angle of 
the cutter; a is thickness of the cut layer; ς is shrinkage of plates; µf (µb) 
is coefficient of friction on the front (back) surface; Ñ (Ñb) is the contact 
length along the front (back) surface; Φ is the angle, which determines 
the direction of shear during cutting.

The set of Eqs. (30) makes possible to determine geometric param-
eters of deformable cutting zone, such as the length of the leading cold-
hardening in front of the cutter tip in cutting direction and cold-hard-
ening depth of surface layer under the treated surface.

Starkov [16] has obtained expressions for determining the dimen-
sions of the plastically deformable cutting zone
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where σ0.2 is a yield stress, and g is a distribution index.
Distribution index g linearly depends on the relative content in 

heat-resistant alloys of the hardening phase and is essentially a charac-
teristic of the material.

The results of experimental investigation carried out by Starkov 
[16] showed that free cutting is accompanied by formation of an area 
advanced hardening in front of cutter and a hardened area of metal un-
der the treated surface.

Thus, length of zone of leading work-hardening is on average 2–3 
times greater than depth of work-hardening surface layer of the ma-
chined part (Table 1). The zone of advanced hardening moves in front of 
the moving cutting wedge at a speed equal to collective or average speed 
movement of dislocation ensemble, which consists dislocations of differ-
ent types and signs.

Figure 2 shows calculated and experimental values dimensions of 
the plastically deformed cutting zone obtained by decorating after 
broaching three heat-resistant alloys.

The experimental values of l and H are shown for two cutting speeds: 
4 and 7.9 m/min for ÕÍ56ÂÌÊÞ and ÆÑ6ÊÏ alloys, 4 and 22.5 m/min 
for ÕÍ77ÒÞÐ alloy; for higher speeds the values of l and H are marked 
by shaded points. Data analysis in Fig. 2, carried out by the author [16], 
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showed that the experimental values of l and H are fairly tightly grouped 
around the communication line between the size of the reinforcing zone 
and the logarithm of the ratio of the effective (calculated) stress to the 
yield strength (reference). Thus, it is possible to conclude that formulas 
(31) exactly enough determine size the plastic deformed zone, binding 
them to module of work-hardening processed material and its structural 
state through the index of g. It is possible to suppose that formulas are 
suitable for description sizes of the plastic deformed cutting zone not 
only of heat-resistant alloys, but also of any other metals and of alloys 
and will differ only in the coefficient value.

Let us consider in more detail the process of plastic deformation. It 
is well known that plastic deformation and cold-hardening of a metal is 
a consequence of the nucleation and motion of dislocations newly appea-
ring or already existing in the metal. During deformation, dislocations 

Fig. 2. Comparison of calculated (◊, ○) and experimental (●, ♦) values of the depth 
of hardening H and the length of leading hardening l with free cutting of ÆÑ6ÊÏ 
(a), ÕÍ77ÒÞÐ (b), and ÕÍ56ÂÌÊÞ (c) alloys [16]



ISSN 1608-1021. Usp. Fiz. Met., 2020, Vol. 21, No. 2 261

The Boundaries of Plastic Zone of Metal Deformation During the Cutting

are the first to move in the slip system where the tangential stresses reach 
a maximum, and the plastic flow of the metal is possible only if the tan-
gential stresses exceed a certain critical threshold value close to the yield 
strength [16]. The magnitude of this threshold stress depends on the ini-
tial dislocation structure, that it is determined by the initial dislocation 
density, which in turn is determined by the type of crystal lattice, the 
presence of impurities and technological heredity in an aspect that in-
cludes all previous operations of the technological process. The motion 
of dislocations, as well as other defects is accompanied by dissipa tion of 
the strain energy with its transition to heat. Thus, we make con clude 
that the heating processes associated with the deformation of the metal, 
as well as the propagation of zones of elastic-plastic deformation and 
heat are interconnected and apparently require a comprehensive review.

4. The Mechanism of Inhibition of Dislocations 
and Transformation of Energy at the Deformation

The reference [19] presents the results of experiments performed by the 
author in order to determine the thermal conductivity of a metal sub-
jected to advanced plastic deformation (APD). Based on the analysis of 
experimental data, a reduction in the thermal conductivity of deformed 
metal was established as compared with the material not subjected to 
preliminary plastic deformation [19]. Thus, with the increase of work-
hardening depth, the total heat conductivity of sample decreases, which 
allowed concluding the presence of the phenomenon of dynamic thermal 
conductivity of the workpiece surface layer, at that, with a change in 

Table 1. The results of measuring sizes of plastic deformed zone at the free cutting

Processed 
material

Cutting conditions
Sizes of the plastic 

deformed zone

Increment of depth of the 
hardened layer during 
secondary deformation

v,
m/minute

t,
mm

in front
of cutter

under
the cutter

mm %

Nickel alloy 
ÕÍ77ÒÞÐ

04.00

04.00

22.50

22.50

04.00

22.50

0.14

0.34

0.14

0.46

1.91

0.54

2.29

2.79

1.41

2.85

6.12

2.20

1.16

1.58

0.68

1.27

3.15

2.00

0.14

0.15

0.02

0.11

—

—

12.00

09.50

02.90

08.70

—

—
Electrical 
engineering 
steel 1511

04.00

04.00

22.50

22.50

0.32

0.38

0.07

0.28

1.50

1.60

1.20

—

0.81

0.94

1.10

1.15

0.05

0.04

0.30

0.07

06.20

04.30

27.30

06.10
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the depth of the leading plastic deformation, the thermal conductivity 
in the riveted layer changes [20]. However, at calculating the thermal 
conductivity of the riveted layer, it was found that with an increase in 
the depth of the hardened layer, an increase in the value of its thermal 
conductivity is observed. The author explains the reason for this by the 
nonlinear distribution of deformation along the depth of the riveted 
layer with a maximum near the surface (at a depth of 0.5 mm, the de-
formation propagates more intensively as compared to a depth in 
0.92 mm) (Fig. 3). 

Heat conduction resistance, as known, is the result of a destruction 
periodicity of the crystal lattice. These imperfections are associated 
with vacancies, dislocations, and other defects in the crystal structure. 
Plastic deformation leads to cold-hardening, which is a consequence of 
the advancement and nucleation of new dislocations and vacancies. New 
distributions and the former certainly have influence on heat conductiv-
ity of the riveted layer, but appearance of vacancies in more consider-
able degree results in the increase of dispersion of electrons that ham-
pers the transmission of energy in turn. The influence of cold-hardening 
on the thermophysical characteristics of the material is also confirmed 
in Ref. [21]. Heat treatment leads to a change in the structure, me-
chanical properties of the density of dislocations and thermophysical 
properties, which is reflected in the graph in Fig. 4.

The paper [22] presents a methodology for calculating the activation 
energy of dislocation motion and the activation volume. It is well known 

Fig. 3. Values of the 
integral thermal con-
ductivity of the sam-
ple depending on the 
depth of the defor-
med metal layer [20]

Fig. 4. Thermal dif-
fusivity and electri-
cal conductivity of 
the X245 steel, 
X245– Cu composite, 
and CuFe3 alloy in 
two states: the quen-
ched state as well as 
quenched and aged 
state [21]
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that the resistance to the motion of 
dislocations in crystals is due to the 
existence of barriers, overcoming of 
which is either athermal in nature, 
or can be facilitated by thermal 
fluctuations [23–30]. Barriers of 
the first type include, e.g., long-
range stress fields, grain boundar-
ies, particles of other phases; barri-
ers of the second type include 
Peierls–Nabarro barriers, ‘forest’ dislocations, and thresholds on screw 
dislocations. A critical shear stress is a function of temperature and 
strain rate: τcr = τa + τT (T, ε).

Currently, there are two widely used approaches to the experimental 
determination of parameters characterizing the temperature-dependent 
part of the flow stress, the activation energy of dislocation motion (U0) 
and the activation volume (V ). This is an approach developed by Seeger 
and Conrad, based on the equation for the strain rate as the rate of a 
thermally activated process [23–26], and the approach developed by Mil-
man and Trefilov, based on the analysis of the dependence of the critical 
shear stress τcr on temperature [27, 28]. The authors noted the short-
comings of the Seeger–Conrad method approach; in particular, low ac-
curacy of calculations at low stresses and strains. These shortcomings 
were successfully overcome in the integrated model of Trefilov and Mil-
man combining the approaches of Seeger and Haasen.

A typical temperature dependence of the critical shear stress τcr is 
shown schematically in Fig. 5. At temperatures below T1, the depend-
ence τcr(T) is described by a linear equation, and in the temperature 
range T1 < T < T2, it is exponential. Above T2, up to temperatures 
(0.35–0.4)Tmelt, hardening is athermal in nature and is not determined 
by barriers, which can be overcome by thermal fluctuations.

A useful feature of the Trefilov–Milman approach is the fact that ther-
mally activated parameters can only be determined using the tempera-
ture dependence of the critical shear stress (or the temperature depend-
ence of the flow stress) without varying the strain rate. The authors 
note that thermal activation analysis of critical shear stress τcr performed 
by the proposed method leads to the dependence of the ac tivation energy 
and activation volume on the stress, while these values determined by 
the Trefilov–Milman method are material constants depending on the 
type of interatomic bond, nature of the potential barrier [27, 28].

Fig. 5. Critical shear stress vs. tempera-
ture (schematic dependence) [22]
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The mechanism for converting the kinetic energy of a moving dislo-
cation into thermal is as follows: the elastic field of a moving disloca-
tion disturbs equilibrium of phonon gas, which leads to the outflow of 
energy from dislocation to phonons with effective braking of disloca-
tions and excitation of increasing number of phonon modes [31]. In con-
nection with the foregoing, we need to link geometric parameters of 
elastoplastic zone, the plastic energy of dislocation, and thermophysical 
characteristics of the material.

We apply dimensional theory to the problem. Above, we partially 
carried out a schematization of the phenomenon considered in a metal, 
identified the factors and quantities of interest to us [32]. Thus, the 
size of plastic zone deformation depends on speed of dislocations, a cer-
tain characteristic size and thermal characteristics. Then, we can write 
l = f (V, S, a). The measurement of speed, area, and thermal diffusivity 
were chosen as the basic units.

From the four parameters, it is possible to form one independent 
dimensionless combination (VS/(la)) or mutually inverse to it, where V 
is dislocation sliding velocity, S is characteristic area, l is characteristic 
size of the deformable region, a is thermal diffusivity.

The paper [33] reports on the analysis of structures resulting from 
severe plastic deformations, which allowed authors to suggest possibil-
ity of layered flow of deformed body under condition of continuity be-
tween layers. Indeed, metal layers can move at different speeds due to 
friction the surface of sample with the matrix due to a decrease in mo-
ve ment speed from centre to the surface, as well as due to the tempera-
ture gradient (heated sample in a less warm or cold matrix) (see Fig. 6). 
The formation of vortices can occur in collision of flows with different 
speeds. Such vortices are similar to whirlpools; they are modelled as 3D 
formations in columns form or cylindrical regions that rotate, bend, and 
combine. The similarity described above may be useful for the model 
description of severe plastic deformation from a new point of view, 
which began in the work of Beygelzimer [34]. A similar hypothesis was 
developed further in our study [1] and, as will be shown below, makes it 

Fig. 6. Structure of Fe–17Ni–10W–10Co–1Mo–1Ti alloy past 87% hydro-extrusion 
(à) and its analogy with convection of liquid (with Al particles) in rotating cylinder, 
heated at the external surface and cooled to the centre (b) [33]
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possible to look differently at the process of metal deformation and to 
link the thermophysical and mechanical properties of the material.

5. Dislocation–Kinetic Approach

The deformation process can be considered as a transport phenomenon, 
as a result of which there is spatial energy transfer, where dislocation 
can be considered as a carrier of traditional shear. In this case, the dis-
location will act as an elementary carrier of strains, namely quantum of 
deformation. With this approach, the dislocation can be considered as a 
quasi-particle. For such a dislocation gas, it can be applied the molecu-
lar-kinetic method of investigation, which in our case should be called 
the dislocation–kinetic method. This allows us to calculate the heat flux 
in such a quasi-gas using the kinetic theory of gases. If the temperature 
of such gas is different in different places, then, the average dislocation 
energy will also be different in different places, then, by analogy with 
the formulas [35, 36], for dislocation gas, can write formula that allows 
calculating thermal conductivity (coefficient):

 
1

3
V L cλ = ρ , (32)

where 〈V 〉 is an average dislocation sliding velocity, 〈L〉 is an average 
length of dislocation line running, c is a specific heat capacity, ρ is a 
metal density. If we go to the sources of the derivation of formula (32) 
for gases and phonons, then, we can go to a single elementary site per-
pendicular to the direction of dislocations motion 〈V 〉. We write the 
well-known equation for the heat flux through the elementary side: 

 
1

2 ,
6 2 B

i dT
q V nS k L

dz
= −  (33)

where n is number of gas molecules; i is sum of the number of transla-
tional, rotational and doubled number of vibrational degrees of mole-
cules freedom; dT/dz is projection of the temperature gradient on z 
axis; S is surface perpendicular to the dislocations movement and equiv-
alent to the area swept by dislocations; kB is Boltzmann constant. Tak-
ing into account equality (i/2)nkB = ρ c and the Fourier law for thermal 
conductivity q = −λ (dT/dz) S, we obtain:

 
1

3

S
V S c

L

λ
= ρ  (34)

or

 
1

.
3

aS
V S

L
=  (35)

We hypothesized that the area in formula (35) is equivalent to the 
surface area swept by mo ving dislocations (Fig. 7). There were two rea-
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sons for constructing such 
a hy pothesis. First, dislo-
cations in a metal have 
different lengths and ran-
dom orientations that cau-
ses them to slip in pro cess 
of deformation in di f-
ferent directions covered 
by a he misphere with a 
base pla ne perpendicular 
to the di rection of strain 
rate. Secondly, there is a 
correlation between de-

formation and area swept by dislocations during deformation. The first 
argument in favour of developed theory makes it possible to consider 
the surface S as directly proportional to the area swept, and taking into 
account the priority of sliding direction in the load direction allows us 
to remove the 1/3 factor from formula (35) and assume the equivalence 
S of the area swept by dislocations. The Arrhenius-type equation for the 
plastic strain rate confirms the second argument about relationship be-
tween deformation and the area swept by dislocations [37]:

ef
0 exp

B

g v
NA b

k T

 ∆ − τ
ε = ν − 

 
ɺ ,

where N is number of dislocations per unit volume, À is area swept by 
dislocations, b is Burgers vector module, ν0 is frequency response de-
pending on the nature of the obstacle and method of it overcoming, g is 
free energy change due to local atomic displacements during activation 
(equivalent to the Helmholtz free energy). 

Based on the above reasoning and analysis of research results ob-
tained by other authors, we can transform dependence (35) and use the 
result for further calculations. 

If vector z (with |〈z〉| = S/〈L〉) is aligned with the dislocation slip ve-
locity vector, the modulus of this vector is just the length of leading 
hardening zone. Consider the resulting physical quantity 〈V〉S/|〈z〉|a.

We turn to the formulas obtained by Starkov [16], replace the pa-
rameter g−1 with parameter 〈V〉S/a in formula (31), then, we obtain:

1

0.2

ln z V S

a

−
 σ 〈 〉

= σ 〈 〉  l
,   

1

0.2

ln y V S

a

−
σ  〈 〉

= σ 〈 〉  h
.

Let us analyse the obtained dimensionless expression 〈V〉S/|〈z〉|a. The 
value in the numerator 〈V〉S is the growth rate of the deformable re -
gion volume in the direction of deformation, and the denominator is the 

Fig. 7. Dislocation mo tion
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growth rate of region volume bound-
ed by isothermal surface, respecti-
vely (Fig. 8). The obtained dimen-
sionless coefficient is a cross bet-
ween the modified Péclet and Fou rier 
criteria and describes convective 
heat transfer. On the other hand, 
the obtained complex can be consid-
ered as a criterion for the homochro-
nism of the dissipation energy of 
plastic deformation and the rate of 
restructuring temperature field 
within the deformable region. If we 
conduct further analysis, it is pos-
sible really to find confirmation of this definition. Therefore, the rela-
tions (S/a) and (V/|z|) re p resent nothing more than thermally character-
istic and deformation time, respectively. Denote the expression 〈V〉
S/|〈z〉|a by analogy with the Péclet number symbol Df. So we can write 
Df = [ln(σz/σ0.2)]

−1 = 〈V〉S/(a|〈 l 〉|).
We consider the deformation number Df, which we introduced. The for-

mula has a physical sense only when σ ≥ σ0.2, i.e. the plastic flow is rea li zed. 
As the stress acting in machining zone increases, the number Df 

decreases, which corresponds to regular growth of vector module |〈z〉|, at 
other constant data. Thus, large Df numbers correspond to initial degree 
of plastic flow and less developed plastic deformation. When ln (σz/σ0.2) = 1, 
the number Df = 1 that corresponds to the current stress equal to 
σ ≈ 2.718 σ0.2; then, Df ∈ (0; +∞). In the previously considered cases 
(Fig. 1), the maximum values of Df do not exceed 20 units, which is 
consistent ln (σz/σ0.2) = 0.05. 

Let us analyse the obtained result. The comparison of our formula 
Df = 〈V 〉S/(a|〈 l 〉|) and l = (1/g)ln(σz/σ0.2) results to g−1 = 〈V 〉S/a, and the-
refore 〈V 〉S/a is invariant to the conditions of deformation and thermo-
physical characteristics of material. In experimental investigation, it is 
confirmed that [19, 21] thermophysical properties of materials change 
after deformation, which is explained by an increase in number of de-
fects in the riveted material. At the same time, a change in substructure 
of material and related changes in properties cannot significantly change 
the coefficient of thermal diffusivity, and it compensates for the wide 
range of changes in sliding dislocations velocity 〈V 〉 observed during de-
for mation. Then we can conclude that product 〈V 〉S remains constant.

Show it. It is known that the stress of the flow of material during 
deformation obeys the law σ ≈ ρ , which was first introduced by Taylor 
[16, 38], and area swept by dislocations can be determined by the for-
mula S = 1/ρ, then 1/ Sσ ≈ . It is also known that sliding dislocations 

Fig. 8. Region bounded by isothermal 
surface
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velocity depends on the stress of 
the metal flow (Fig. 9) and obeys 
the relation [39]: 

 V = kσm, (36)
where k is a material constant.

Since the value of m can vary 
from 1 to 100, we can write Eq. (36):

                 k = VS
n, (37)

where n ∈ [0.5; 50].
One way or another, the growth 

of one of the parameters, namely, the velocity or area with dislocations, 
entails a decrease in the other one according to the law (37); in the case 
of n = 1, the connection between V and S is inversely proportional, 
which only confirms our results.

Let us estimate the value of leading zone hardening according to the 
formula |〈z〉| = S/〈L〉. It is known that in annealed polycrystals disloca-
tion density varies in the range ρ = 1010–1012 m−2. Commonly, the dis-
tance between obstacles is assumed to be 1/L ≈ ρ .

The area swept by dislocations varies from 1/ρ to d2 (grain size), 
therefore, the limits of its change can be estimated [38]. After a substi-
tution, we obtain / (1 / ) 1/S L = ρ ρ = ρ , |〈z〉| = 10−5–10−6 m. However, 
more accurate estimate requires taking experimental data on certain 
material. Therefore, it is known [16] that for samples of heat-resistant 
(annealed) alloys, the distance between the slip bands was within 〈L〉 = 
= 2.54 ⋅ 10−8 m, then,

 
10 2

8max

10 10
0.0039 m,

2.54 10 2.54

− −

−= = =
⋅

z

 
12 4

8min

10 10
0.000039 m,

2.54 10 2.54

− −

−= = =
⋅

z

which correspond to experimental data. The calculation of sizes of 
ad vanced riveting zone through the average grain size of the alloys 
(d = 0.32–0.45 mm) gives too high estimates, this is due fact that with 
this formulation of problem, the presence of stoppers on path of disloca-
tion movement within individual grains is not taken into account, and 
only their borders are considered as obstacles. In this case, the area swept 
by dislocations is on average five orders of magnitude larger, which gives 

Fig. 9. Mobility of dislocations in crys-
tals, where 1 — edge dislocations at 300 K 
2 — screw dislocations at 300 K, 3 — 
screw dislocations at 77 K [40]
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overestimated data when calculating the boundaries of the elastoplastic 
zone. It should be understood that such calculations are only evaluative 
in nature and, due to wide range of changes in dislocation density, can-
not be used to determine the desired boundaries. In our opinion, the most 
rational is empirical definition of 〈V 〉S/a = 1/g for a certain material.

6. Conclusions

The bases of theoretical analyses of technological processes in multidi-
mensional spaces are considered. Analysis of the deformed state of ma-
terial of a part during diamond smoothing and grinding is made using 
the general equations of continuum mechanics and displacement veloc-
ity fields. We established that determination of boundary of elastoplas-
tic deformation zone, and the methods for its determination are impor-
tant theoretical issues in the field of deformation mechanics. The meth-
ods of determining the size of plastic zone during machining by cutting 
are considered. Analysis of various methods for calculating cutting for-
ces that can be used for calculation of power characteristics of machi-
ning process and determination of the stresses acting in cutting zone is 
presented. The Starkov’s model [16] for determination of boundaries of 
elastoplastic zone was further developed, based on which a phenomeno-
logical model was proposed that reveals the physical meaning of coeffi-
cient in formulas for calculation of the boundaries of zone of plastic 
flow metal. A dislocation–kinetic method is developed for determination 
of boundaries of the elastoplastic deformation zone, based on the con-
cept dislocation as a quasi-particle, which is a strain quantum. Using 
the dislocation–kinetic model, a new material characteristic is introdu-
ced, namely, the deformation number (similarity criterion), which rela-
tes dissipation of plastic strain energy and rate of temperature field tuning.
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ÂÈÇÍÀ×ÅÍÍß ÌÅÆ ÏËÀÑÒÈ×ÍÎ¯ ÇÎÍÈ 
ÄÅÔÎÐÌÓÂÀÍÍß ÌÅÒÀËÓ ÏÐÈ Ð²ÇÀÍÍ²

Îñíîâíîþ ìåòîþ ðîáîòè º àíàë³ç ïðîáëåìè âèçíà÷åííÿ ìåæ ïðóæíüî-ïëàñòè÷íî¿ 
çîíè çà ð³çíèõ ìåòîä³â îáðîáëåííÿ äåòàë³â ð³çàííÿì. Ðîçãëÿíóòî ð³çí³ ìåòîäèêè 
âèçíà÷åííÿ ñèë ð³çàííÿ çà ìåõàí³÷íîãî îáðîáëåííÿ ç³ çí³ìàííÿì ñòðóæêè, à òà-
êîæ ï³äõîäè äî âèçíà÷åííÿ íàïðóæåíî-äåôîðìîâàíîãî ñòàíó ìàòåð³àëó. Ðîçãëÿ-
íóòî ñòðóêòóðó êîìïëåêñíèõ òåîðåòèêî-åêñïåðèìåíòàëüíèõ äîñë³äæåíü åíåð -
ãî ñèëîâèõ ïàðàìåòð³â ïðîöåñ³â ìåõàí³÷íîãî îáðîáëÿííÿ. Äëÿ òåîðåòè÷íîãî äîñ-
ë³ä æåííÿ åíåðãîñèëîâèõ ïàðàìåòð³â ïðîöåñ³â çàïðîïîíîâàíî ìåòîä ðîçðàõóí êó 
ïëàñòè÷íîãî äåôîðìóâàííÿ ìåòàë³â, çàñíîâàíèé íà çàìêíóò³é ñèñòåì³ ð³âíÿíü 
ìå õàí³êè ñóö³ëüíèõ ñåðåäîâèù. Îäåðæàíî âèðàçè, çà äîïîìîãîþ ÿêèõ ìîæíà 
â³äòâîðþâàòè ïðîñòîðîâó êàðòèíó ðîçïîä³ëó äåôîðìàö³é ó ìåòàë³ çà ä³àìàíòî-
âîãî âèãëàäæóâàííÿ òà øë³ôóâàííÿ, ùî äàº çìîãó íàî÷íî óÿâèòè ìåõàí³çì äå-
ôîðìóâàííÿ òà ñïðîñòèòè àíàë³ç äåôîðìîâàíîãî ñòàíó ìàòåð³àëó. Âñòàíîâëåíî 
ôóíêö³îíàëüíèé çâ’ÿçîê ì³æ ïîòóæí³ñòþ äåôîðìóâàííÿ òà ïàðàìåòðàìè ðåæèìó 
îáðîáëåííÿ äåòàëåé çà ä³àìàíòîâîãî âèãëàäæóâàííÿ òà øë³ôóâàííÿ. Çà ïðî ïîíî-
âàíî ìåòîä åêñïðåñ-ðîçðàõóíêó ñèë ð³çàííÿ ç âèêîðèñòàííÿì â³äîìèõ ³íæåíåðíèõ 
ìåòîäèê. Ïðîàíàë³çîâàíî åêñïåðèìåíòàëüí³ òà ðîçðàõóíêîâ³ äàí³ ùîäî âèçíà÷åí-
íÿ ðîçì³ð³â ïëàñòè÷íî-äåôîðìîâàíî¿ çîíè âàæêîîáðîáëþâàíèõ ìàòåð³àë³â. Äå-
òàëüíî ðîçãëÿíóòî ìåõàí³çì ãàëüìóâàííÿ äèñëîêàö³é ³ ïåðåòâîðåííÿ åíåðã³¿ ï³ä 
÷àñ äåôîð ìàö³¿, â ðåçóëüòàò³ ÷îãî ðîçðîáëåíî äèñëîêàö³éíî-ê³ íåòè÷íèé ï³äõ³ä, â 
îñíîâ³ ÿêîãî ëåæèòü ïîíÿòòÿ ïðî äèñëîêàö³þ ÿê ïðî êâàçè÷àñòèíêó, ùî ïðåä-
ñòàâëÿº ñîáîþ êâàíò äåôîðìóâàííÿ. Ç âèêîðèñòàííÿì äèñëî êà ö³éíî-ê³íåòè÷íîãî 
ï³äõîäó ðîçðîáëåíî ìàòåìàòè÷íó ìîäåëü, ÿêà óìîæëèâëþº âèêîíàííÿ ðîçðàõóí-
êó âåëè÷èíè çîíè âèïåðåäæóâàëüíîãî çì³öíåííÿ, ùî ï³ä òâåðä æåíî ïîð³âíÿííÿì 
³ç åêñïåðèìåíòàëüíèìè äàíèìè. Äîîïðàöüîâàíî ìîäåëü Ñòàðêîâà, ïîÿñíåíî 
ô³çè÷íèé çì³ñò êîåô³ö³ºíòà â ôîðìóëàõ äëÿ ðîçðàõóíêó ìåæ çîí çì³öíåííÿ. Ââå-
äåíî íîâèé êðèòåð³é ïîä³áíîñòè, ùî çâ’ÿçóº äèñèïàö³þ åíåðã³¿ ïëàñòè÷íî¿ 
äåôîðìàö³¿ òà øâèäê³ñòü ïåðåáóäîâè òåìïåðàòóðíîãî ïîëÿ.
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ÎÏÐÅÄÅËÅÍÈÅ ÃÐÀÍÈÖ ÏËÀÑÒÈ×ÅÑÊÎÉ ÇÎÍÛ 

ÄÅÔÎÐÌÈÐÎÂÀÍÈß ÌÅÒÀËËÀ ÏÐÈ ÐÅÇÀÍÈÈ

Îñíîâíîé öåëüþ ðàáîòû ÿâëÿåòñÿ àíàëèç ïðîáëåìû îïðåäåëåíèÿ ãðàíèöû óïðóãî-
ïëàñòè÷åñêîé çîíû ïðè ðàçëè÷íûõ ìåòîäàõ îáðàáîòêè äåòàëåé ðåçàíèåì. Ðàñ-
ñìîòðåíà ñòðóêòóðà êîìïëåêñíûõ òåîðåòèêî-ýêñïåðèìåíòàëüíûõ èññëåäîâàíèé 
ýíåðãîñèëîâûõ ïàðàìåòðîâ ïðîöåññîâ ìåõàíè÷åñêîé îáðàáîòêè. Äëÿ òåîðåòè÷å-
ñêîãî èññëåäîâàíèÿ ýíåðãîñèëîâûõ ïàðàìåòðîâ ïðîöåññîâ ïðåäëîæåí ìåòîä ðàñ-
÷¸òà ïëàñòè÷åñêîãî äåôîðìèðîâàíèÿ ìåòàëëîâ, îñíîâàííûé íà çàìêíóòîé ñèñòå-
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ìå óðàâíåíèé ìåõàíèêè ñïëîøíûõ ñðåä. Ïîëó÷åíû âûðàæåíèÿ, ñ ïîìîùüþ êî-
òîðûõ ìîæíî âîñïðîèçâîäèòü ïðîñòðàíñòâåííóþ êàðòèíó ðàñïðåäåëåíèÿ äåôîð -
ìàöèé â ìåòàëëå ïðè àëìàçíîì âûãëàæèâàíèè è øëèôîâàíèè, ÷òî ïîçâîëÿåò 
íà ãëÿäíî ïðåäñòàâèòü ìåõàíèçì äåôîðìèðîâàíèÿ è óïðîñòèòü àíàëèç äåôîðìè-
ðîâàííîãî ñîñòîÿíèÿ ìàòåðèàëà. Óñòàíîâëåíà ôóíêöèîíàëüíàÿ ñâÿçü ìåæäó ìîù-
íîñòüþ äåôîðìèðîâàíèÿ è ïàðàìåòðàìè ðåæèìà îáðàáîòêè äåòàëåé ïðè àëìàçíîì 
âûãëàæèâàíèè è øëèôîâàíèè. Ðàññìîòðåíû ðàçëè÷íûå ìåòîäèêè îïðåäåëåíèÿ 
ñèë ðåçàíèÿ ïðè ìåõàíè÷åñêîé îáðàáîòêå ñî ñú¸ìîì ñòðóæêè, à òàêæå ïîä õîäû 
ê îïðåäåëåíèþ íàïðÿæ¸ííî-äåôîðìèðîâàííîãî ñîñòîÿíèÿ ìàòåðèàëà. Ïðåäëîæåí 
ìåòîä ýêñïðåññ-ðàñ÷¸òà ñèë ðåçàíèÿ ñ èñïîëüçîâàíèåì èçâåñòíûõ èíæåíåðíûõ 
ìåòîäèê. Ïðîàíàëèçèðîâàíû ýêñïåðèìåíòàëüíûå è ðàñ÷¸òíûå äàííûå ïî îïðåäå-
ëåíèþ ðàçìåðîâ ïëàñòè÷åñêè äåôîðìèðóåìîé çîíû òðóäíîîáðàáàòûâàåìûõ ìàòå-
ðèàëîâ. Ïîäðîáíî ðàññìîòðåí ìåõàíèçì òîðìîæåíèÿ äèñëîêàöèé è ïðåîáðàçîâà-
íèÿ ýíåðãèè ïðè äåôîðìèðîâàíèè, â ðåçóëüòàòå ÷åãî ðàçðàáîòàí äèñëî êàöèîííî-
êèíåòè÷åñêèé ïîäõîä, â îñíîâå êîòîðîãî ëåæèò ïîíÿòèå î äèñëîêàöèè êàê î 
êâàçè÷àñòèöå, ïðåäñòàâëÿþùåé ñîáîé êâàíò äåôîðìèðîâàíèÿ. Ñ èñïîëüçîâàíèåì 
äèñëîêàöèîííî-êèíåòè÷åñêîãî ïîäõîäà ðàçðàáîòàíà ìàòåìàòè÷åñêàÿ ìîäåëü, êî-
òîðàÿ ïîçâîëÿåò ïðîèçâîäèòü ðàñ÷¸ò âåëè÷èíû çîíû îïåðåæàþùåãî óï ðî÷íåíèÿ, 
÷òî ïîäòâåðæäåíî ñðàâíåíèåì ñ ýêñïåðèìåíòàëüíûìè äàííûìè. Äîðàáîòàíà ìî-
äåëü Ñòàðêîâà, îáúÿñí¸í ôèçè÷åñêèé ñìûñë êîýôôèöèåíòà â ôîðìóëàõ äëÿ ðàñ-
÷¸òà ãðàíèö çîí óïðî÷íåíèÿ. Ââåä¸í íîâûé êðèòåðèé ïîäîáèÿ, ñâÿçûâàþùèé 
äèññèïàöèþ ýíåðãèè ïëàñòè÷åñêîé äåôîðìàöèè è ñêîðîñòü ïåðåñòðîéêè òåìïåðà-
òóðíîãî ïîëÿ.
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