Low-Capacitance Josephson Junctions

A. P. Shapovalov$^{1,2}$, P. Febvre$^3$, U. Yilmaz$^3$, V. I. Shnyrkov$^4$, M. O. Belogolovskii$^{1,5}$, and O. A. Kordyuk$^{1,4}$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$V. М. Bakul Institute for Superhard Materials of the N.A.S. of Ukraine, 2 Avtozavodska Str., UA-04074 Kyiv, Ukraine
$^3$Université Savoie Mont Blanc, IMEP-LAHC, Campus Scientifique, F-73376 Le Bourget du Lac Cedex, France
$^4$Kyiv Academic University of the N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^5$Vasyl’ Stus Donetsk National University, 21 600-Richchya Str., UA-21021 Vinnytsia, Ukraine

Received 02.12.2019; final version — 13.02.2020 Download PDF logo PDF

Abstract
The Josephson effect, as an example of a macroscopic quantum phenomenon, reveals itself in the three-layer heterostructures formed by two superconductors coupled by a weak link that usually consists of a 1–2 nm-thick insulating barrier. The traditional way of modelling such-systems’ dynamics is based on an equivalent circuit that comprises three parallel elements: a pure superconducting element with a certain supercurrent-versus-Josephson phase difference dependence, a resistor $R$, and a capacitor $C$. In this short review, we analyse the practical problem of reducing the junction capacitance while maintaining or slightly impairing other characteristics. Some arguments are presented to explain why the capacitance should be suppressed and how it will affect performance of superconducting quantum interference devices (SQUIDs) and digital electronics circuits. As a solution for low-capacitance junctions, we propose a weak link made of an amorphous-silicon interlayer doped with nanoscale metallic drops between the two superconducting Mo–Re-alloy electrodes.

Keywords: Josephson junctions, RCSJ model, low capacitance, doped semiconductor barriers, Mo–Re-alloy electrodes, SQUID, SFQ logic.

Citation: A. P. Shapovalov, P. Febvre, U. Yilmaz, V. I. Shnyrkov, M. O. Belogolovskii, and O. A. Kordyuk, Low-Capacitance Josephson Junctions, Progress in Physics of Metals, 21, No. 1: 3–25 (2020)


References (59)  
  1. B. D. Josephson, Phys. Lett., 1: 251 (1962). https://doi.org/10.1016/0031-9163(62)91369-0
  2. K. K. Likharev, Dynamics of Josephson Junctions and Circuits (New York: Gordon and Breach: 1986).
  3. J. A. Blackburn, M. Cirillo, and N. Grønbech-Jensen, Phys. Rep., 611: 1 (2016). https://doi.org/10.1016/j.physrep.2015.10.010
  4. V. Lacquaniti, D. Andreone, N. De Leo, M. Fretto, A. Sosso, and M. Belogolovskii, IEEE Trans. Appl. Supercond., 19: 234 (2009). https://doi.org/10.1109/TASC.2009.2019072
  5. T. Yamamoto, S. Suzuki, K. Takahashi, Y. Yoshisato, and S. Maekawa, Appl. Phys. Lett., 66: 1000 (1995). https://doi.org/10.1063/1.113585
  6. A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys., 76: 411 (2004). https://doi.org/10.1103/RevModPhys.76.411
  7. L. Yu, N. Newman, J. M. Rowell, and T. Van Duzer, IEEE Trans. Appl. Supercond., 17: 3886 (2005). https://doi.org/10.1109/TASC.2005.854302
  8. L. Yu, R. Gandikota, R. K. Singh, L. Gu, D. J. Smith, X. Meng, X. Zeng, T. Van Duzer, J. M. Rowell, and N. Newman, Supercond. Sci. Technol., 19: 719 (2006). https://doi.org/10.1088/0953-2048/19/8/006
  9. A. B. Kaul, S. R. Whiteley, T. Van Duzer, L. Yu, N. Newman, and J. R. Rowell, Appl. Phys. Lett., 78: 99 (2001). https://doi.org/10.1063/1.1337630
  10. D. Olaya, B. Baek, P. D. Dresselhaus, and S. P. Benz, IEEE Trans. Appl. Supercond., 18: 1797 (2008). https://doi.org/10.1109/TASC.2008.2007652
  11. D. Olaya, P. D. Dresselhaus, S. P. Benz, J. Bjarnason, and E. N. Grossman, IEEE Trans. Appl. Supercond., 19: 144 (2009). https://doi.org/10.1109/TASC.2009.2018254
  12. D. Olaya, P. D. Dresselhaus, S. P. Benz, A. Herr, Q. P. Herr, A. G. Ioannidis, D. L. Miller, and A. W. Kleinsasser, Appl. Phys. Lett., 96: 213510 (2010). https://doi.org/10.1063/1.3432065
  13. D. I. Sheka and A. N. Kokol, phys. stat. sol. (b), 76: 413 (1976). https://doi.org/10.1002/pssb.2220760145
  14. A. P. Shapovalov, V. E. Shaternik, O. G. Turutanov, V. Yu. Lyakhno, and V. I. Shnyrkov, Low Temp. Phys., 45: 776 (2019). https://doi.org/10.1063/1.5111306
  15. V. Shaternik, A. Shapovalov, M. Belogolovskii, O. Suvorov, S. Döring, S. Schmidt, and P. Seidel, Mater. Res. Exp., 1: 026001 (2014). https://doi.org/10.1088/2053-1591/1/2/026001
  16. V. Lacquaniti, C. Cassiago, N. De Leo, M. Fretto, A. Sosso, P. Febvre, V. Shaternik, A. Shapovalov, O. Suvorov, M. Belogolovskii, and P. Seidel, IEEE Trans. Appl. Supercond., 26: 1100505 (2016). https://doi.org/10.1109/TASC.2016.2535141
  17. M. Belogolovskii, E. Zhitlukhina, V. Lacquaniti, N. De Leo, M. Fretto, and A. Sosso, Low Temp. Phys., 43: 756 (2017). https://doi.org/10.1063/1.4995622
  18. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett., 10: 486 (1963). https://doi.org/10.1103/PhysRevLett.10.486
  19. V. Shaternik, M. Belogolovskii, T. Prikhna, A. Shapovalov, O. Prokopenko, D. Jabko, O. Kudrja, O. Suvorov, and V. Noskov, Phys. Procedia, 36: 94 (2012). https://doi.org/10.1016/j.phpro.2012.06.052
  20. A. L. Gudkov, M. Yu. Kupriyanov, and K. K. Likharev, Sov. Phys. JETP, 67: 1478 (1988).
  21. A. L. Gudkov, M. Yu. Kupriyanov, and A. N. Samus’, J. Exp. Theor. Phys. 114: 818 (2012). https://doi.org/10.1134/S1063776112030144
  22. V. E. Shaternik, A. P. Shapovalov, A. V. Suvorov, N. A. Skoryk, and M. A. Belogolovskii, Low Temp. Phys., 42: 426 (2016). https://doi.org/10.1063/1.4951668
  23. V. E. Shaternik, A. P. Shapovalov, T. A. Prikhna, O. Y. Suvorov, M. A. Skorik, V. I. Bondarchuk, and V. E. Moshchil, IEEE Trans. Appl. Supercond., 27: 1800507 (2017). https://doi.org/10.1109/TASC.2016.2636255
  24. V. E. Shaternik, A. P. Shapovalov, and A. Yu. Suvorov, Low Temp. Phys., 43: 877 (2017). https://doi.org/10.1063/1.4995640
  25. J. Talvacchio, M. A. Janocko, and J. Greggi, J. Low Temp. Phys., 64: 395 (1986). https://doi.org/10.1007/BF00681709
  26. S. M. Deambrosis, G. Keppel, V. Ramazzo, C. Roncolato, R. G. Sharma, and V. Palmieri, Physica C, 441: 108 (2006). https://doi.org/10.1016/j.physc.2006.03.047
  27. E. Rudenko, D. Solomakha, I. Korotash, P. Febvre, E. Zhitlukhina, and M. Belogolovskii, IEEE Trans. Applied Supercond., 27: 1800105 (2017). https://doi.org/10.1109/TASC.2016.2630033
  28. T. Shang, D. J. Gawryluk, J. A. T. Verezhak, E. Pomjakushina, M. Shi, M. Medarde, J. Mesot, and T. Shiroka, Phys. Rev. Materials, 3: 024801 (2019). https://doi.org/10.1103/PhysRevMaterials.3.024801
  29. R. Gaudenzi, O. Island, J. de Bruijckere, E. Burzur, T. M. Klapwijk, and H. S. J. van der Zant, Appl. Phys. Lett., 106: 222602 (2015). https://doi.org/10.1063/1.4922042
  30. A. Kalenyuk, A. Shapovalov, V. Shnyrkov, V. Shaternik, M. Belogolovskii, P. Febvre, F. Schmidl, and P. Seidel, J. Phys. Conf. Ser. (2020) (in press).
  31. R. L. Fagaly, Applied Superconductivity. Handbook on Devices and Applications (Ed. P. Seidel) (Weinheim: Wiley-VCH: 2015), p. 952.
  32. A. Shoit, M. Aoyagi, S. Kosaka, F. Shinoki, and H. Hayakawa, Appl. Phys. Lett., 46: 1098 (1985). https://doi.org/10.1063/1.95774
  33. M. Gurvich, M. A. Washington, and M. H. Huggins, Appl. Phys. Lett., 42: 472 (1983). https://doi.org/10.1063/1.93974
  34. M. Aoyagi, A. Shoit, S. Kosaka, F. Shinoki, H. Nakagawa, S. Takada, and H. Hayakawa, Jpn. J. Appl. Phys., 23: L916 (1984). https://doi.org/10.1143/JJAP.23.L916
  35. A. P. Shapovalov, V. E. Shaternik, O. G. Turutanov, O.Y. Suvorov, A. A. Kalenyuk, V. Y. Lyakhno, U. Yilmaz, P. Febvre, and V. I. Shnyrkov, Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01254-9
  36. J. Clarke and F. K. Wilhelm, Nature, 453: 1031 (2008). https://doi.org/10.1038/nature07128
  37. K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.-S. Tsai, T. Yamamoto, and Y. Nakamura, Nat. Commun., 7: 12303 (2016). https://doi.org/10.1038/ncomms12303
  38. V. I. Shnyrkov, W. Yangcao, A. A. Soroka, O. G. Turutanov, and V. Yu. Lyakhno, Low Temp. Phys., 44: 213 (2018). https://doi.org/10.1063/1.5024538
  39. A. Lupaşcu, S. Saito, T. Picot, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, Nature Phys. 3, 119 (2007). https://doi.org/10.1038/nphys509
  40. V. I. Shnyrkov and G. M. Tsoi, Principal and Applications of Superconducting Quantum Interference Devices (Ed. A. Barone) (Singapore: World Scientific: 1992), p. 77.
  41. K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond., 1: 3 (1991). https://doi.org/10.1109/TASC.2016.2630033
  42. Niobium Integrated Circuit Fabrication, Process #03-10-45, Design Rules, Revision #25, 12/12/2012, Hypres, Inc. (2012).
  43. P. Febvre, Microwave Superconducting Electronics with Josephson Devices: from Ultrasensitive Detectors for Radioastronomy to the Future Applications for the Novel Information and Communication Technologies, Habilitation à Diriger des Recherches (Le Bourget du lac, France: Université Savoie Mont Blanc: 16 May 2003).
  44. J. Kunert, O. Brandel, S. Linzen, O. Wetzstein, H. Toepfer, T. Ortlepp, and H.-G. Meyer, IEEE Trans. Appl. Supercond., 23: 1101707 (2013). https://doi.org/10.1109/TASC.2013.2265496
  45. J. Kunert, R. Ijsselsteijn, E. Il’ichev, O. Brandel, G. Oelsner, S. Anders, V. Schultze, R. Stolz, and H.-G. Meyer, Low Temp. Phys., 43: 785 (2017). https://doi.org/10.1063/1.4995626
  46. S. K. Tolpygo, V. Bolkhovsky, D. E. Oates, R. Rastogi, S. Zarr, A. L. Day, T. J. Weir, A. Wynn, and L. M. Johnston, IEEE Trans. Appl. Supercond., 28: 1100212 (2018). https://doi.org/10.1109/TASC.2018.2809442
  47. S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates, L. M. Johnson, and M. A. Gouker, IEEE Trans. Appl. Supercond., 26: 1100110 (2016). https://doi.org/10.1109/TASC.2016.2519388
  48. S. K. Tolpygo, D. Yohannes, R. T. Hunt, J. A. Vivalda, D. Donnelly, D. Amparo, and A. F. Kirichenko, IEEE Trans. Appl. Supercond., 17: 946 (2007). https://doi.org/10.1109/TASC.2007.898571
  49. M. Hidaka, S. Nagasawa, K. Hinode, and T. Satoh, IEICE Trans. Electronics, E91-C: 318 (2008). https://doi.org/10.1093/ietele/e91-c.3.318
  50. S. Nagasawa, T. Satoh, Y. Kitagawa, M. Hidaka, H. Akaike, A. Fujimaki, K. Takagi, N. Takagi, and N. Yoshikawa, Physica C: Superconductivity, 469: 1578 (2009). https://doi.org/10.1016/j.physc.2009.05.219
  51. S. Nagasawa and M. Hidaka, J. Phys.: Conf. Ser., 871:012065 (2017). https://doi.org/10.1088/1742-6596/871/1/012065
  52. D. T. Yohannes, R. T. Hunt, J. A. Vivalda, D. Amparo, A. Cohen, I. V. Vernik, and A. F. Kirichenko, IEEE Trans. Appl. Supercond., 25: 1100405 (2015). https://doi.org/10.1109/TASC.2014.2365562
  53. P. Feautrier, M. Hanus, and P. Febvre, Supercond. Sci. Technol., 5: 564 (1992) https://doi.org/10.1088/0953-2048/5/9/008
  54. M. Maezawa, M. Aoyagi, H. Nakagawa, I. Kurosawa, and S. Takada, Appl. Phys. Lett., 66: 2134 (1995). https://doi.org/10.1063/1.113927
  55. J.-C. Villegier, B. Delaet, V. Larrey, P. Febvre, J. W. Tao, and G. Angenieux, Physica C: Superconductivity, 326–327: 133 (1999). https://doi.org/10.1016/S0921-4534(99)00410-4
  56. T. Ortlepp and H. F. Uhlmann, Supercond. Sci. Technol., 17: S112 (2004). https://doi.org/10.1088/0953-2048/17/5/004
  57. T. Plecenik, M. Tomášek, M. Belogolovskii, M. Truchly, M. Gregor, J. Noskovič, M. Zahoran, T. Roch, I. Boylo, M. Špankova, Š. Chromik, P. Kúš, and A. Plecenik, J. Appl. Phys., 111: 056106 (2012). https://doi.org/10.1063/1.3691598
  58. M. Truchly, T. Plecenik, E. Zhitlukhina, M. Belogolovskii, M. Dvoranova, P. Kúš, and A. Plecenik, J. Appl. Phys., 120:185302 (2016). https://doi.org/10.1063/1.4967392
  59. G. U. Kamble, N. P. Shetake, S. D. Yadav, A. M. Teli, D. S. Patil, S. A. Pawar, M. M. Karanjkar, P. S. Patil, J. C. Shin, M. K. Orlowski, R. K. Kamat, and T. D. Dongale, Int. Nano Lett., 8: 263 (2018). https://doi.org/10.1007/s40089-018-0249-z