Mathematical Modelling of the Sintering Process of Iron-Based Metal-Glass Materials

T. G. Jabbarov, O. A. Dyshin, M. B. Babanli, and I. I. Abbasov

Department of Mechanical and Materials Science Engineering, Azerbaijan State Oil and Industry University, 16/21 Azadliq Ave., AZ-1010 Baku, Azerbaijan

Received 05.05.2019; final version — 08.10.2019 Download: PDF logo PDF

Based on the study of the mechanisms of diffuse coalescence and coagulation, we review mathematical methods of description and construction of models for sintering process of the metal–ceramic materials. These models are represented by a set of nonlinear differential equations including bulk, grain-boundary, and surface diffusion coefficients, and correspond to a sequence of the temperature stage levels increasing with a certain rate and having different durations. By adjusting the levels, rates and durations of temperature regimes, technical parameters of the charge, it is possible to control the sintering process online. The description of the kinetics of liquid-phase sintering under pressure is performed based on the rheological theory of sintering using the diffusion–viscous flow mechanism. According to this mechanism, there are a tangential slippage along the grain boundaries and a decrease of the volume of pores due to the ejection of vacancies to the surface. After the formation of the liquid phase during sintering of the powder solid, (generally) firstly, there is a growth of grains, and then, a compaction of the obtained alloy. The process of sintering of the iron, cast iron, and sitall (glassceramic) powders is considered as the mutual diffusion of two (quasi)binary alloys: cast iron (iron + carbon) and fayalite (iron + sitall). The calculation of the interdiffusion coefficient of the resulting alloy is carried out according to the Darken formula. A number of features characterize sintering of multicomponent systems. The sintering of dissimilar materials (with different melting points) is a complex eutectic process, in which, along with self-diffusion, causing the mass transfer to the region of particle contact, there is an interdiffusion, which provides homogenization of the composition via equalization of the concentrations of dissimilar atoms within the sample. Under conditions of limited solubility or complete insolubility of the components, sintering of the system is complicated by isolating homogeneous particles from mutual contact, hindering the flow of self-diffusion, and thereby, worsening the sintering conditions. For the numerical solution of the problem, a fourth-order Runge–Kutta method with a variable integration step is used. A software package for solving the problem is developed, the calculation results are given on the example of an alloy of a powder mixture of iron, cast iron, and sitallized glass.

Keywords: metal-ceramic and metal-glass materials, solid- and liquid-phase sintering, self- and interdiffusion, sintering rheology.

DOI: https://doi.org/10.15407/ufm.20.04.584

Citation: T. G. Jabbarov, O. A. Dyshin, M. B. Babanli, and I. I. Abbasov, Mathematical Modelling of the Sintering Process of Iron-Based Metal-Glass Materials, Prog. Phys. Met., 20, No. 4: 584–619 (2019); doi: 10.15407/ufm.20.04.584


References (122)  
    1. O. I. Raichenko, Metallofiz. Noveishie Tekhnol., 38, No. 5: 635 (2016) (in Russian). Crossref
    2. A. Boudilmi and K. Loucif, Metallofiz. Noveishie Tekhnol., 40, No. 12: 1689 (2018). Crossref
    3. D.  S. Kanibolotsky, O. A. Shcheretskyi, M. V. Afanasiev, and A. M. Verkhovliuk, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1481 (2017) (in Russian). Crossref
    4. V. V.Gunina, V. G.Mel’nikov, and N. I. Zamyatina, Fizika, Khimiya i Mekhanika Tribosistem: Mezhvuzovskiy Sbornik Nauchnykh Trudov (Ivanovo: Ivanovo State University: 2002), p. 96 (in Russian).
    5. M. V. Kirsanov, Metalosteklyannyye Kompozitsionnyye Materialy na Osnove Vysokomargantsevistoy Stali 110Г13Л [Metal-Glass Composite Materials Based on 110Г13Л High-Manganese Steel] (Disser. for Cand. Tech. Sci.) (Novocherkassk: South-Russian State Tech. Univ.: 2000) (in Russian).
    6. D. Brigante, New Compozite Materials: Selection, Design and Application (Switzerland: Springer International Publishing: 2014). Crossref
    7. R. M. German, Particulate Composites: Fundamentals and Applications (Switzerland: Springer International Publishing: 2016). Crossref
    8. D. A. Oshchenkov, Tekhnologiya, Struktura i Svoistva Tribotekhnicheskikh Materialov na Osnove Poroshkov Nerzhaveyushchikh Staley [Technology, Structure and Properties Tribotechnical Materials Based on Powder Stainless Steels] (Disser. for Cand. Tech. Sci.) (Perm: Perm State Techn. Univ.: 2006) (in Russian).
    9. J. Tengzelius and A. B. Höganäs, PM Asia 2007 (April, 2007, Shanghai).
    10. V. V. Gunina, Prochnostnyye i Antifriktsionnyye Svoistva Poroshkovogo Bronzografita s Napolnitelyami (Depon. VINITI: 14.03.2005), 340-И (in Russian).
    11. A. H. Monazzah, H. Powaliakbar, R. Baghu, and S. M. S. Reihani, Composites Part B: Eng., 125: 49 (2017). Crossref
    12. S. V. Bobyr, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1437 (2018) (in Russian). Crossref
    13. H. I. Imanov, I. D. Sadyhov, A. T. Mamedov, and T. G. Jabbarov, Sci. and Tech. Conf. ‘Novyye Materialy v Povyshenii Ehkspluatatsionnoi Nadezhnosti Mashin i Instrumentov — AzITU (Baku, 1990), p. 47.
    14. T. G. Jabbarov, Razrabotka Kompozitsionnykh Poroshkovykh Materialov ‘Zhelezo–Chugun–Steklo’ dlya Detalei Bytovoi Tekhniki [Development of Composite Powder Materials ‘Iron–Cast Iron–Glass’ for Household Appliance Components] (Disser. for Cand. Tech. Sci.) (Novocherkassk: 1992) (in Russian).
    15. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnackiy, Protsessy Poroshkovoy Metallurgii [Processes of Powder Metallurgy] (Moscow: MISIS: 2002), Vol. 2 (in Russian).
    16. O. V. Roman, Poroshkovyye Stali [Powder Steels] (Moscow: Mashinostroenie: 2000), Vol. 2 (in Russian).
    17. A. B. Höganäs, Höganäs Handbook for Sintered Compaction (Sweden: 2004).
    18. B. Ya. Pines, ZhTF, 16: 137 (1946).
    19. G. C. Kyszynski, J. Appl. Phys., 20: 1160 (1949). Crossref
    20. C. Herring, The Physics of Powder Metallurgy (Ed. W. E. Kingston) (New York.: Mc Graw Hill: 1951).
    21. Ya. E. Geguzin and V. I. Kudrik, Fiz. Met. Metalloved., 7: 235 (1959) (in Russian).
    22. I. M. Lifshitz and V. V. Slezov, ZhETF, 35: 479 (1958) (in Russian).
    23. Protsessy Vzaimnoj Diffuzii v Splavakh [Processes of Interdiffusion in Alloys] (Ed. K. P. Gurov) (Moscow: Nauka, Fizmatlit: 1973) (in Russian).
    24. Ya. E. Geguzin, Fizika Spekaniya [Physics of Sintering] (Moscow: Nauka, Fizmat: 1984) (in Russian).
    25. V. A. Ivensen, Fenomenologiya Spekaniya i Nekotoryye Voprosy Teorii [Phenomenology of Sintering and Some Problems of Theory] (Moscow: Metallurgiya: 1985) (in Russian).
    26. V. N. Antsiferov, S. N. Peshcherenko, and P. G. Kurilov, Vzaimnaya Diffuziya i Gomogenizatsiya v Poroshkovykh Materialakh [Interdiffusion and Homogenization of Powder Materials] (Moscow: Metallurgiya: 1988) (in Russian).
    27. Yu. M. Mishin and I. M. Razumovskiy, Struktura i Svoistva Vnutrennikh Poverhnostey Razdela v Metallakh [Structure and Properties of Internal Interfaces in Metals] (Moscow: Nauka: 1988), p. 96 (in Russian).
    28. V. V. Skorohod, Yu. M. Solonin, and I. V. Uvarova, Khimicheskie, Diffuzionnyye i Reologicheskie Protsessy v Tekhnologii Poroshkovykh Materialov [Chemical, Diffusion and Rheological Processes in the Powder Materials Technology] (Kiev: Naukova Dumka: 1990) (in Russian).
    29. Yu. R. Kolobov, Diffuzionno-Kontroliruemyye Protsessy na Granitsakh Zeren i Plastichnost Metallicheskikh Polikristallov [Diffusion-Controlled Processes on the Grain Boundaries and Plasticity of Metallic Polycrystals] (Moscow: Nauka, Sibirskoe Predpriyatie RAN: 1998) (in Russian).
    30. Yu. R. Kolobov, A. G. Lipnitsky, M. B. Ivanov, and E. V. Golosov, Composites and Nanostructures, No. 2: 5 (2009) (in Russian).
    31. A. V. Ragulya, Nauchnyye Osnovy Upravlyayemykh Neizotermicheskikh Protsessov Sinteza i Spekaniya Nanostrukturnykh Materialov [Scientidic Bases of Controllable Nonisothermic Processes of Synthesis and Sintering Nanostructural Materials] (Disser. for Dr. Tech, Sci.) (Kiev: I. N. Frantsevich Inst. for Problems of Mater. Sci.: 2001) (in Russian).
    32. A. V. Ragulya and V. V. Skorohod, Konsolidirovannyye Nanostrukturnyye Materialy [Consolidated Nanostructural Materials] (Kiev: Naukova Dumka: 2007) (in Russian).
    33. D. L. Johnson, J. Appl. Phys., 40, No. 1: 192 (1969). Crossref
    34. T. E. Volin, K. H. Lie, and R. W. Balluffi, Acta Met., 19, No. 4: 263 (1971). Crossref
    35. H. E. Exner, Principles of Single Phase Sintering (Tel-Aviv: Freund Publishing House: 1979), Vol. 1, Nos. 1/4, Series Reviews on powder metallurgy and physical ceramics.
    36. I. Kaur, Yu. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (West Sussex: John Willey and Sons LTD: 1995).
    37. I. Kaur and V. Gust, Diffuziya po Granitsam Zeren i Faz [Diffusion over Grain Boundaries and Phases] (Moscow: Mashinostroenie: 1991) (in Russian).
    38. G. P. Cherepanov, Methods of Fracture Mechanics: Solid Matter Physics. Solid Mechanics and Its Applications (Dordrecht: Springer: 1997), Vol. 51, p. 84. Crossref
    39. A. M. Gusak and G. V. Lutsenko, Powder Metall. Met. Ceram., 38: 569 (1999). Crossref
    40. Yu. N. Ivashchenko, B. B. Bogatyrenko, and V. N. Eremenko, Poverkhnostnyye Yavleniya v Rasplavakh i Protsessakh Poroshkovoy Metallurgii (Kiev: Izdatelstvo AN USSR: 1963), p. 391 (in Russian).
    41. G. H. S. Price, С. J. Smithells, and S. V. Williams, J. Inst. Metals, 62: 239 (1938).
    42. H. S. Cannon and F. V. Lenel, Proc. First Plansee Seminar (Ed. F. Benesovsley) (Reutte, Austria, 1953), p. 106.
    43. W. D. Kingery, J. Appl. Phys., 30, No. 3: 301 (1959). Crossref
    44. V. N. Eremenko, Poverkhnostnyye Yavleniya v Rasplavakh i Protsessakh Poroshkovoy Metallurgii (Kiev: Izdatelstvo AN USSR: 1963), p. 83 (in Russian).
    45. I. P. Kislyakov, Uplotnenie, Poverkhnostnyye Yavleniya v Rasplavakh i Protsessakh Poroshkovoy Metallurgii (Kiev: Izdatelstvo AN USSR: 1963), p. 182 (in Russian).
    46. V. V. Skorokhod, S. M. Solonin, V. A. Dubok, L. L. Kolomiets, T. V. Permyakova, and A. V. Shinkaruk, Powder Metall. Met. Ceram., 49, Nos. 9–11: 588 (2011). Crossref
    47. A. P. Savitskiy, Zhidkofaznoye Spekanie Sistem s Vzaimodeistvuyushchimi Komponentami (Novosibirsk: Nauka, Sibirskoe Otdelenie: 1991), p. 184.
    48. T. M. Radchenko and V. A. Tatarenko, Defect Diffus. Forum, 273–276: 525 (2008). Crossref
    49. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
    50. A. G. Khachaturyan, Prog. Mater. Sci., 22, Nos. 1–2: 1 (1978). Crossref
    51. T. M. Radchenko, V. A. Tatarenko, H. Zapolsky, and D. Blavette, J. Alloys and Compounds, 452, No. 1: 122 (2008). Crossref
    52. T. M. Radchenko, V. A. Tatarenko, and H. Zapolsky, Solid State Phenomena, 138: 283 (2008). Crossref
    53. V. S. Panov, Russ. J. Non-Ferrous Metals, 48, No. 2: 148 (2007) (in Russian). Crossref
    54. Yu. R. Kolobov, V. A. Vinokurov, E. V. Naidenkin et al. Sposob Polucheniya Materialov s Ul’tramelkozernistoy ili Sublikristallicheskoy Strukturoy Deformirovaniem s Obestocheniem Intensivnoy Plasticheskoy Deformatsii (Patent RF T2334582.13.07.2008) (in Russian).
    55. V. N. Antsiferov and I. V. Anciferova, Vestnik Permskogo Natsional’nogo Issledovatel’skogo Politekhnicheskogo Universiteta. Mashinostroenie, Materialovedenie, 17, No. 2: 66 (2015) (in Russian).
    56. I. V. Anciferova, Vestnik Permskogo Natsional’nogo Issledovatel’skogo Politekhnicheskogo Universiteta. Mashinostroenie, Materialovedenie, 17, No. 2: 13 (2015) (in Russian).
    57. L. I. Leont’ev and M. I. Alymov, Izvestiya Vuzov. Chernaya Metallurgiya, 59, No. 5: 306 (2016) (in Russian). Crossref
    58. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Oxford: Elsevier: 1986). Crossref
    59. V. V. Skorohod, Reologicheskie Osnovy Teorii Spekaniya (Kiev: Naukova Dumka: 1976) (in Russian).
    60. J. K. Mackenzie, Proc. Roy. Soc. B, 63, No. 1: 2 (1950). Crossref
    61. J. K. Mackenzie and R. Shuttleworth, Proc. Phys. Soc. B, 62, No. 12: 833 (1949). Crossref
    62. A. I. Berezhnoi, Glass-Ceramics and Photo-Sitalls (Boston, MA: Springer: 1970), p. 125. Crossref
    63. M. L. Lobanov, I. K. Denisova, and T. M. Rusakov, Rashchet Kontsentratsionnoy Zavisimosti Koeffitsienta Vzaimnoy Diffuzii v Tverdykh Rastvorakh Dvukhkomponentnykh Sistem (Ekaterinburg: Ural State Tech. Univ.: 2006) (in Russian).
    64. M. L. Lobanov and M. A. Zorina, Metody Opredeleniya Koeffitsientov Diffuzii: Uchebnoye Posobie [Methods for Determination of Diffusion Coefficients: Tutorial] (Ekaterinburg: Izdatel’stvo Ural’skogo Universiteta: 2017) (in Russian).
    65. L. P. Khoroshun, Prikladnaya Mekhanika, No. 10: 30 (2000).
    66. V. M. Gorokhov, E. V. Zvonarev, M. S. Koval’chenko, and G. P. Ustinova, Powder Metall. Met. Ceram., 17, No. 11: 848 (1978). Crossref
    67. V. N. Kokorin, V. I. Filimonov, and E. M. Bulyzhev, Nauchnyye Osnovy Tekhnologii Pressovaniya iz Polidispersnykh Metallicheskikh Poroshkov s Plotnoupakovannoy Strukturoy (Ul’yanovsk: UlGTU: 2010) (in Russian).
    68. О. P. Shtempel’ and V. А. Frutskiy, Int. Conf. ‘Innovation Technologies in Mechanical Engineering’ (October 19–20, 2011) (Novopolotsk: 2011), p. 230 (in Russian).
    69. V. K. Sheleg, A. S. Kovgur, and R. A. Moskalets, Vestnik of Vitebsk State Technological University, No. 29: 114 (2015).
    70. P. Bross and H. E. Exner, Acta Met., 27, No. 6: 1013 (1979). Crossref
    71. I. G. Kornienko, T. B. Chistyakova, S. S. Ordan’yan, D. S. Rybin, and A. D. Polosin, Vestnik Astrakhan State Technical University, No. 4: 23 (2014) (in Russian).
    72. V. V. Kaverynsky, A. I. Trotsan, and Z. P. Sukhenko, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1051 (2017) (in Russian). Crossref
    73. Yu. M. Mishin and N. M. Razumovskiy, Poverkhnost’, No. 7: 5 (1983) (in Russian).
    74. V. N. Antsiferov, S. N. Peshcherenko, and P. G. Kurilov, Vzaimnaya Diffuziya i Gomogenizatsiya v Poroshkovykh Materialakh (Moscow: Metallurgiya: 1988) (in Russian).
    75. L. A. Saraev, Modelirovanie Makroskopicheskikh, Plasticheskikh Svoistv Mnogokomponentnykh Kompozitsionnykh Materialov (Samara: Izdatel’stvo Samara State Univ.: 2000) (in Russian).
    76. A. P. Savitskii, Tech. Phys., 55, No. 3: 381 (2010). Crossref
    77. I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, Phys. Solid State, 56, No. 7: 1401 (2014). Crossref
    78. V. N. Lobko and I. N. Bekman, Tech. Phys., 55, No. 9: 1306 (2010). Crossref
    79. D. L. Johnson and I. B. Cutler, J. Amer. Ceram. Soc., 46, No. 11: 545 (1963). Crossref
    80. W. D. Kingery and M. Berg, J. Appl. Phys., 26: 1205 (1955). Crossref
    81. J. G. R. Rocldand, Z. Metalk., 58: 467 (1967). Crossref
    82. D. L. Johnson and T. M. Clarke, Acta Met., 12: 1173 (1964). Crossref
    83. Ya. E. Geguzin, Makroskopicheskie Defekty v Metallakh [Macroscopic Defects in Metals] (Moscow: Metallurgiya: 1962) (in Russian).
    84. V. V. Skorohod, Sintering’85 (Eds. G. C. Kuczynski, D. P. Uskoković, H. Palmour, and M. M. Ristić) (Springer: Boston, MA: 1987), p. 81. Crossref
    85. Ya. E. Geguzin and Yu. S. Kaganovskij, Sov. Phys. Usp., 21, No. 7: 611 (1978). Crossref
    86. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003) (in Ukrainian).
    87. V. A. Tatarenko and T. M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003). Crossref
    88. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Defect Diffus. Forum, 280–281: 29 (2008). Crossref
    89. G. Gottshtein, Physical Foundations of Materials Science (Berlin–Heidelberg: Springer-Verlag: 2004). Crossref
    90. H. Mehrer, Diffusion in Solids (Berlin–Heidelberg: Springer-Verlag: 2007). Crossref
    91. A. G. Stromberg and V. P. Semchenko, Fizicheskaya Khimiya (Moscow: Vysshaya Shkola: 2006) (in Russian).
    92. V. M. Bezpalchuk, R. Kozubski, and A. M. Gusak, Uspehi Fiziki Metallov, 18, No. 3: 205 (2017). Crossref
    93. Yu. S. Projdak, V. Z. Kutsova, T. V. Kotova, H. P. Stetsenko, and V. V. Prutchykova, Uspehi Fiziki Metallov, 20, No. 2: 213 (2019). Crossref
    94. A. I. Berezhnoi, Glass-Ceramics and Photo-Sitalls (Boston, MA: Springer: 1970), p. 193. Crossref
    95. G. I. Belyaev and N. F. Smakota, Poverkhnostnyye Yavleniya v Rasplavakh i Protsessakh Poroshkovoy Metallurgii (Kiev: Naukova Dumka: 1973) (in Russian).
    96. Yu. P. Solntsev, E. I. Pryakhin, S. A. Vologzhanina, and A. P. Petkova, Nanotekhnologii i Spetsial’nyye Materialy (St. Petersburg: Khimizdat: 2009) (in Russian).
    97. R. Z. Vlasyuk, E. S. Lugovskaya I. D. Radomysel’skii, Powder Metall. Met. Ceram., 8, No. 3: 221 (1980). Crossref
    98. I. D. Radomysel’skiy, Ehntsiklopediya Neorganicheskikh Materialov (Kiev: Naukova Dumka: 1977), vol. 1, p. 808 (in Russian).
    99. Y. Zhao, D. Chen, D. Li, J. Peng, and B. Yan, Metals, 8, No. 2: 91 (2018). Crossref
    100. M. E. Shaibani, N. Eshraghi, and M. Ghambari, Mater. Des., 47: 174 (2013). Crossref
    101. R. J. Borg and G. J. Dienes, An Introduction to Solid State Diffusion (Boston: Academic Press: 1988). Crossref
    102. S. K. Sharma, S. Banerjee, Kuldeep, and A. K. Jain, J. Mater. Res., 4: 603 (1989). Crossref
    103. S. K. Sharma, M.-P. Macht, and V. Naundorf, Acta Metall. Mater., 40: 2439 (1992). Crossref
    104. V. Naundorf, M.-P. Macht, A. S. Bakai, and N. Lazarev, J. Non-Cryst. Solids, 224, No. 2: 122 (1998). Crossref
    105. G. B. Fedorov, Mobility of Atoms in Crystal Lattices (Ed. V. N. Svechnikov) (Jerusalem: Springfield: 1970), p. 28.
    106. M. P. Dariel, Scr. Metall., 8, No. 7: 869 (1974). Crossref
    107. F. Faupel, W. Frank, M.-P. Macht, V. Naundorf, K. Ratzke, H. R. Schober, S. K. Sharma, and H. Teichler, Rev. Mod. Phys., 75, No. 1: 237 (2003). Crossref
    108. P. G. Shewmon, Diffusion in Solids (Cham: Springer Int. Publ.: 2016). Crossref
    109. C. Zener, Imperfections in Nearly Perfect Crystals (Eds. W. Shockley, J. H. Holloman, R. Maurer, and F. Seitz) (New York: Wiley: 1952), p. 289.
    110. R. Bechmann and R. F. S. Hearmon, Crystal and Solid State Physics. Elastic, Piezoelectric, Piezooptic and Electrooptic Constants of Crystals (Eds. K.-H. Hellwege and A. M. Hellwege) (Berlin: Springer: 1966).
    111. Y. Limoge and A. Grandjean, Defect Diffus. Forum, 143–147: 747 (1997). Crossref
    112. S. K. Sharma, M.-P. Macht, and V. Naundorf, Phys. Rev. B, 49: 6655 (1994). Crossref
    113. J. C. Fisher, J. Appl. Phys., 22, No. 1: 74 (1951). Crossref
    114. R. T. Whipple, Phil. Mag., 45, No. 371: 1225 (1954). Crossref
    115. T. Suzuoka, Trans. Jap. Inst. Metals, 2, No. 1: 25 (1961). Crossref
    116. H. S. Levine and Mac Callum, J. Appl. Phys., 31, No. 3: 595 (1960). Crossref
    117. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, and Yu. I. Prylutskyy, Configurations of Structural Defects in Graphene and Their Effects on Its Transport Properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. Bruce T. Edwards) (New York: Nova Science Publishers, Inc.: 2014), Ch. 7, p. 219.
    118. T. M. Radchenko and V. A. Tatarenko, Physica E, 42, No. 8: 2047 (2010). Crossref
    119. I. Yu. Sagalyanov, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Uspehi Fiziki Metallov, 11, No. 1: 95 (2010). Crossref
    120. T. M. Radchenko and V. A. Tatarenko, Solid State Phenomena, 150: 43 (2009). Crossref
    121. A. A. Popov and S. V. Grib, Vzaimnaya Diffuziya v Dvoinykh Sistemakh (Ekaterinburg: Ural State Tech. Univ.: 2006) (in Russian).
    122. R. M. German, P. Suri, and S. J. Park, J. Mater. Sci., 44, No. 1: 1 (2009). Crossref