Effect of Microstructure, Deformation Mode and Rate on Mechanical Behaviour of Electron-Beam Melted Ti–6Al–4V and Ti–1.5Al–6.8Mo–4.5Fe Alloys

O. M. Ivasishin$^{1}$, S. V. Akhonin$^{2}$, D. G. Savvakin$^{1}$, V. A. Berezos$^{2}$, V. I. Bondarchuk$^{1}$, O. O. Stasyuk$^{1}$, P. E. Markovsky$^{1}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$E.O. Paton Electric Welding Institute, NAS of Ukraine, 11 Bozhenko Str., UA-03680 Kyiv, Ukraine

Received: 10.07.2018; final version - 26.07.2018. Download: PDF logoPDF

Two commercial cost-efficient titanium alloys — a low-alloyed $\alpha$+$\beta$-Ti–6Al–4V (mass.%) and a metastable $\beta$-alloy Ti–1.5Al–6.8Mo–4.5Fe melted with a single electron-beam cold hearth melting approach — are employed in a present study as program materials. The influence of microstructure formed by means of the subsequent thermomechanical and heat treatments on both the mechanical behaviour (evaluated by the deformation energy, $U_{D}$) when tested using standard methods with different deformation rates and the ballistic resistance of plate materials is investigated. As revealed, the weakest dependence of $U_{D}$ on the strain rate corresponds to Ti–6Al–4V alloy with microstructure morphology close to globular one, whereas in the same alloy with a lamellar microstructure (annealed in a single-phase $\beta$-field) as well as in Ti–1.5Al–6.8Mo–4.5Fe alloy with various microstructures, $U_{D}$ values significantly depend on the rate of deformation. Moreover, only after annealing at a temperature of the two-phase $\alpha$+$\beta$ field, the $U_{D}$ value for Ti–6Al–4V upon three-point flexure at varying deformation rate is equal to the sum of the corresponding values obtained under tension and compression. During subsequent ballistic tests of plates of different thicknesses, it is established that the best ballistic impact resistance corresponds to the materials with higher $U_{D}$ values and lower strain-rate sensitivity. The damage of alloys during all types of testing is discussed in detail in terms of possible mechanisms of deformation and fracture.

Keywords: titanium alloys, microstructure, mechanical properties, mechanical behaviour, deformation rates, deformation energy, ballistic tests.

PACS: 61.66.Dk, 61.72.Ff, 61.72.Hh, 62.20.M-, 68.37.Hk, 68.55.jd, 81.05.Bx, 81.10.Fq, 81.20.Hy, 81.40.Ef, 81.40.Jj, 81.40.Np, 81.70.Bt, 83.50.Uv, 83.60.Pq

DOI: https://doi.org/10.15407/ufm.19.03.309

Citation: O. M. Ivasishin, S. V. Akhonin, D. G. Savvakin, V. A. Berezos, V. I. Bondarchuk, O. O. Stasyuk, and P. E. Markovsky, Effect of Microstructure, Deformation Mode and Rate on Mechanical Behaviour of Electron-Beam Melted Ti–6Al–4V and Ti–1.5Al–6.8Mo–4.5Fe Alloys, Usp. Fiz. Met., 19, No. 3: 309—336 (2018), doi: 10.15407/ufm.19.03.309


References (37)  
  1. I. Weiss, R. Srinivasan, P. J. Bania, D. Eylon, and S. L. Semiatin, Advances in the Science and Technology of Titanium Alloy Processing: Proc. Int. Symposium Sponsored by the TMS Titanium and Shaping and Forming Held at the 125th TMS Annual Meeting and Exhibition in Anaheim (California, February 5–8, 1996) (Warrendale, PA: TMS: 1997).
  2. G. Luetjering and J. C. Williams, Titanium (Berlin: Springer-Verlag: 2007). Crossref
  3. R. R. Boyer and R. D. Briggs, J. Mater. Eng. Perform., 14, Iss. 6: 681 (2005). Crossref
  4. L. O. Chirkina, M. B. Lazareva, V. I. Sokolenko, V. S. Okovyt, and V. V. Kalynovsky, Usp. Fiz. Met., 17, No. 4: 343 (2016). Crossref
  5. A. D. Pogrebnjak, O. M. Ivasishin, and V. M. Beresnev, Usp. Fiz. Met., 17, No. 1: 1 (2016). Crossref
  6. V. E. Gromov, K. V. Sosnin, Yu. F. Ivanov, and O. A. Semina, Usp. Fiz. Met., 16, No. 3: 175 (2015). Crossref
  7. See https://boomsupersonic.com.
  8. M. Prampolini and Y. Coraboeuf, Ultra-Rapid Air Vehicle and Related Method for Aerial Locomotion: United States Patent No. 9079661B2 (Published July 14, 2015).
  9. J. Fanning, J. Mater. Eng. Perform., 14, Iss. 6: 686 (2005). Crossref
  10. J. S. Montgomery and M. G. Y. Wells, JOM, 53, Iss. 4: 29 (2001). Crossref
  11. J. Fanning, Proc. of the 11th World Conference on Titanium) (June 3–7, 2007, Kyoto, Japan) (Kyoto: The Japan Institute of Metals: 2007), p. 487.
  12. C. Zheng, F. Wang, and X. Cheng, Int. J. Impact Eng., 85: 161 (2015). Crossref
  13. M. S. Burins, J. S. Hansen, J. I. Paige, and P. C. Turner, The Effect of Thermo-Mechanical Processing on the Ballistic Limit Velocity of Extra Low Interstitial Titanium Alloy Ti–6Al–4V (Army Research Laboratory Report ARL-MR-486: July 2000).
  14. B. B. Singh, G. Sukumar, A. Bhattacharjee, K. S. Kumar, T. B. Bhat, and A. K. Gogia, Materials and Design, 36: 640 (2012). Crossref
  15. C. Zheng, F. Wang, X. Cheng, K. Fu, J. Liu, Y. Wang, T. Liu, and Z. Zhu, Mater. Sci. Eng.: A, 608: 53 (2014). Crossref
  16. K. Sun, X. Yu, C. Tan, H. Ma, F. Wang, and H. Cai, Mater. Sci. Eng.: A, 595: 247 (2014). Crossref
  17. G. Sukumar, B. B. Singh, A. Bhattacharjee, K. S. Kumar, and A. K. Gogia, Int. J. Impact Eng., 54: 149 (2013). Crossref
  18. C. Zheng, F. Wang, X. Cheng, J. Liu, K. Fu, T. Liu, Z. Zhu, K. Yang, M. Peng, and D. Jin, Int. J. Impact Eng., 85: 161 (2015). Crossref
  19. T. L. Jones, Ballistic Performance of Titanium Alloys: Ti–6Al–4V Versus Russian Titanium (Army Research Laboratory Report ARL-CR-0533: February 2004).
  20. P. E. Markovsky, V. I. Bondarchuk, and O. M. Herasymchuk, Mater. Sci. Eng.: A, 645: 150 (2015). Crossref
  21. P. E. Markovsky and V. I. Bondarchuk, J. Mater. Eng. Perform., 26, Iss. 7: 3431 (2017). Crossref
  22. P. E. Markovsky, Mechanical Behavior of Titanium Alloys under Different Conditions of Loading, Key Eng. Mater., 2018 (in press).
  23. J. S. Montgomery, M. G. H. Wells, B. Roopchand, and J. W. Ogilvy, JOM, 49, Iss. 5: 45 (1997). Crossref
  24. J. S. Montgomery and M. G. H. Wells, JOM, 53, Iss. 4: 29 (2001). Crossref
  25. P. E. Markovsky and S. L. Semiatin, J. Mater. Process. Technol., 210, Iss. 3: 518 (2010). Crossref
  26. P. E. Markovsky, Key Eng. Mater., 436: 185 (2010). Crossref
  27. P. E. Markovsky and S. L. Semiatin, Mater. Sci. Eng.: A, 528, Iss. 7–8: 3079 (2011). Crossref
  28. S. V. Akhonin, V. А. Berezos, А. N. Pikulin, А. Yu. Severin, and А. G. Yerokhin, Sovrem. Elektrometall., No. 1: 10 (2017) (in Russian).
  29. A. N. Kalinyuk, N. P. Trigub, V. N. Zamkov, O. M. Ivasishin, P. E. Markovsky, R. V. Teliovich, and S. L. Semiatin, Mat. Sci. Eng.: A, 346, Iss. 1–2: 178 (2003). Crossref
  30. S. V. Akhonin, P. E. Markovsky, V. А. Berezos, O. O. Stasyuk, and А. Yu. Severin, Sovrem. Elektrometall., No. 1: 9 (2018) (in Russian).
  31. See https://www.imp.kiev.ua/download/development/MVI_1884.MOV.
  32. O. M. Ivasishin and P. E. Markovsky, JOM, 48, Iss. 7: 48 (1996).
  33. O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, and P. Allen, Proc. of the 9th World Conf. Titanium’99: Science and Technology (St.-Petersburg, Russia, CRISM ‘Prometey’: 2000), vol. 1, p. 505.
  34. P. E. Markovsky, V. I. Bondarchuk, and Yu. V. Matviychuk, Mater. Sci. Eng.: A, 559: 782 (2013). Crossref
  35. P. E. Markovsky, V. I. Bondarchuk, O. V. Shepotinnyk, and I. M. Gavrysh, Metallofiz. Noveishie Tekhnol., 38, No. 7: 935 (2016). Crossref
  36. Q. V. Viet, A. A. Gazder, P. E. Markovsky, A. A. Saleh, O. M. Ivasishin, and E. V. Pereloma, J. Alloys and Compounds, 585: 245 (2014). Crossref
  37. P. E. Markovsky, Metallofiz. Noveishie Tekhnol., 31: 511 (2009).