Plasticity of Materials Determined by the Indentation Method

Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, А. А. Golubenko

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 30.05.2018; final version - 27.08.2018. Download: PDF logoPDF

In this review, the development of techniques for determining the plasticity of materials by the indentation is considered. The development of methods for determining the plasticity of materials by the indentation is based on the use of fundamental ideas of the physics of strength and plasticity. Significant development of these methods became possible after the introduction of a new plasticity characteristic $\delta^{*} = \epsilon_{р}/\epsilon_{t}$, where $\epsilon_{р}$ is the plastic deformation, and $\epsilon_{t}$ is the total deformation. This plasticity characteristic corresponds to the modern physical definitions of plasticity, in contrast to the widely used elongation to failure $\delta$. The new plasticity characteristic is easily determined by standard determination of hardness by the diamond pyramidal indenters at constant load $P$ (designated as $\delta_{Н}$) and by instrumental nanoindentation (designated as $\delta_{А}$, and $\delta_{Н} \approx \delta_{А}$). A significant advantage of the new plasticity characteristic is the ability to determine it not only for metals, but for materials, which are brittle at the standard mechanical tests (ceramics, thin layers, coatings, etc.), as well. In the development of ideas about theoretical strength, concepts of theoretical plasticity under the dislocation-free and dislocation deformation mechanisms are introduced. A number of studies have established a correlation of $\delta_{Н}$ with the electronic structure of the material and its physical properties. As shown, the Tabor parameter $С$ ($C = HM/\sigma_{S}$, where $HM$ is the Meyer hardness, and $\sigma_{S}$ is the yield stress) is easily calculated by the $\delta_{Н}$ value. Therefore, indentation allows currently determining simply not only the hardness, but also the plasticity and yielding stress of materials. Thus, indentation became a simple method for determination of the complex of mechanical properties of materials in a wide temperature range using a sample in the form of a metallographic specimen.

Keywords: hardness, plasticity, indentation, yield stress, deformation.

PACS: 06.60.Wa, 07.10.-h, 62.20.D-, 62.20.F-, 62.20.fq, 62.20.Qp, 81.40.Jj, 81.40.Lm, 81.70.Bt

DOI: https://doi.org/10.15407/ufm.19.03.271

Citation: Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and А. А. Golubenko, Plasticity of Materials Determined by the Indentation Method, Usp. Fiz. Met., 19, No. 3: 271—308 (2018), doi: 10.15407/ufm.19.03.271


References (80)  
  1. D. Tabor, Phil. Mag. A, 74, No. 5: 1207 (1996). Crossref
  2. M. S. Drozd, Opredelenie Mekhanicheskikh Svoistv Metalla bez Razrusheniya [Determination of Mechanical Properties of a Metal without Destruction] (Moscow: Metallurgiya: 1965), p. 171 (in Russian).
  3. M. P. Markovets, Opredelenie Mekhanicheskikh Svoistv Metallov po Tverdosti [Determination of Mechanical Properties of Metals by Hardness] (Moscow: Mashinostroenie: 1979), p. 191 (in Russian).
  4. M. Sakai, J. Mater. Res., 14, No. 9: 3630 (1999).
  5. Y.-T. Cheng and C.-M. Cheng, J. Appl. Phys. Lett., 73, No. 5: 614 (1998). Crossref
  6. S. M. Walley, Mater. Sci. Technol., 28, Nos. 9–10: 1028 (2012). Crossref
  7. J. A. Greenwood and J. B. P. Williamson, Proc. Royal Society A, 295, No. 1442: 300 (1966). Crossref
  8. J. Luo and J. Lin, Int. J. Solids and Structures, 44, Nos. 18–19: 5803 (2007). Crossref
  9. R. W. Armstrong, L. Ferranti Jr., and N. N. Thadhani, Int. J. Refract. Met. Hard Mater., 24, Nos. 1–2: 11 (2006). Crossref
  10. C. Heinrich, A. M. Waas, and A. S. Wineman, Int. J. Solids and Structures, 46, No. 2: 364 (2009). Crossref
  11. J. Qin, Y. Huang, K. C. Hwang, J. Song, and G. M. Pharr, Acta Mater., 55, No. 18: 6127 (2007). Crossref
  12. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, Acta Met. Mater., 41, No. 9: 2523 (1993). Crossref
  13. B. A. Galanov, Yu. V. Milman, S. I. Chugunova, and I. V. Goncharova, Superhard Materials, No. 3: 25 (1999) (in Russian).
  14. S. N. Zhurkov, A. N. Orlov, and V. R. Regel’, Prochnost’ — Soprotivlenie Razryvu Tela na Dva ili Neskol’ko Chastey, Fizicheskiy Ehntsiklopedicheskiy Slovar’ (Moscow: Sov. Ehntsiklopediya: 1965), vol. 4, p. 235 (in Russian).
  15. See https://en.wikipedia.org/wiki/Plasticity.
  16. A. N. Orlov and V. R. Regel’, Plastichnost’, Fizicheskiy Ehntsiklopedicheskiy Slovar’ (Moscow: Sov. Ehntsiklopediya: 1965), vol. 4, p. 39 (in Russian).
  17. A. A. Il’yushin and V. S. Lenskiy, Plastichnost’, Fizicheskiy Ehntsiklopedicheskiy Slovar’ (Moscow: Sov. Ehntsiklopediya: 1983), p. 547 (in Russian).
  18. A. L. Roytburd, Fizicheskiy Ehntsiklopedicheskiy Slovar’ (Moscow: Sov. Ehntsiklopediya: 1965), p. 548 (in Russian).
  19. E. W. Hart, Acta. Met., 15, No. 2: 351 (1967). Crossref
  20. G. G. Kurdyumova, Yu. V. Milman, and V. I. Trefilov, Metallofizika, 1, No. 2: 55 (1979) (in Russian).
  21. V. I. Trefilov, Yu. V. Milman, R. K. Ivashchenko, Yu. A. Perlovich, A. P. Rachek, and N. I. Freze, Struktura, Tekstura i Mekhanicheskie Svoistva Deformirovannykh Splavov Molibdena [Structure, Texture and Mechanical Properties of Deformed Molybdenum Alloys] (Kiev: Naukova Dumka: 1983), p. 230 (in Russian).
  22. Yu. V. Milman, J. Phys. D: Appl. Phys., 41: 074013 (2008). Crossref
  23. Yu. Milman, S. Chugunova, and I. Goncharova, Int. J. Materials Science and Applications, 3, No. 6: 353 (2014). Crossref
  24. Yu. V. Milman, S. I. Chugunova, and I. V. Gonсharova, High Temp. Mater. Processes, 25, Nos. 1–2: 39 (2006). Crossref
  25. V. I. Trefilov, Yu. V. Milman, and S. A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Fundamentals of Strength of Refractory Metals] (Kiev: Naukova Dumka: 1975), p. 315 (in Russian).
  26. Yu. V. Milman and I. V. Goncharova, Usp. Fiz. Met., 18, No. 3: 265 (2017) (in Russian).
  27. A. V. Byakova, Yu. V. Milman, and A. A. Vlasov, Proc. 8th CIRP International Workshop on Modeling of Machining Operations (May 10–11, 2005, Chemnitz, Germany), p. 559.
  28. Yu. Milman, S. Dub, and A. Golubenko, Mater. Res. Soc. Symp. Proc., 1049: 123 (2008). Crossref
  29. Y. T. Cheng and C. M. Cheng, Mater. Sci. Eng. R, 44, No. 4: 91 (2004). Crossref
  30. X. Zhang, B. D. Beake, and S. Zhang, Toughness Evaluation of Thin Hard Coatings and Films, In: Thin Films and Coatings (Eds. S. Zhang) (Taylor & Francis Group, LLC: 2015), pp. 48–113. Crossref
  31. B. A. Galanov, Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and I. V. Voskoboinik, Crystals, 7, No. 3: 87 (2017). Crossref
  32. Yu. V. Milman, S. Luyckx, V. A. Goncharuk, and Y. T. Northrop, Int. J. Refract. Met. Hard Mater., 20, No. 1: 71 (2002). Crossref
  33. І. V. Goncharova, Vyznachennya Metodom Indentuvannya Fіzyko-Mekhanіchnykh Vlastyvostey Materіalіv z Rіznoyu Krystalіchnoyu Strukturoyu [Determination of Physical and Mechanical Properties of Materials with Different Crystal Structures by Indentation Method] (Abstract of Disser. for PhD Phys.-Math. Sci.) (Kyiv: I. M. Frantsevich Institute for Problems of Materials Science, N.A.S.U.: 2017) (in Ukrainian).
  34. A. J. Harris, B. D. Beake, D. E. J. Armstrong, and M. I. Davies, Experimental Mechanics, 57, No. 7: 1115 (2017). Crossref
  35. J. Maniks, L. Grigorjeva, R. Zabels, D. Millers, I. Bochkov, J. Zicans, T. Ivanova, and J. Grabis, Nuclear Instruments and Methods in Physics Research B, 326: 154 (2014). Crossref
  36. K. J. Kaushal, N. Suksawanga, D. Lahiri, and A. Agarwal, Int. J. Mater. Res., 28, No. 6: 789 (2013). Crossref
  37. Y. H. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, and E. I. Meletis, Surf. Coat. Technol., 205, No. 1: 146 (2010). Crossref
  38. Yu. V. Milman, A. A. Golubenko, and S. N. Dub, Acta Mater., 59, No. 20: 7480 (2011). Crossref
  39. W. D. Nix and H. Gao, J. Mechanics and Physics of Solids, 46, No. 3: 411 (1998). Crossref
  40. N. A. Stelmashenko, M. G. Walls, L. M. Brown, and Yu. V. Milman, Acta Met. et Mater., 41, No. 10: 2855 (1993). Crossref
  41. Y. Y. Lim and M. M. Chaudhri, Philos. Mag. A, 79, No. 12: 2979 (1999). Crossref
  42. A. I. Yurkova, Yu. V. Milman, and A. V. Byakova, Russian Metallurgy (Metally), 2010, No. 4: 258 (2010). Crossref
  43. S. Cheng, E. Ma, M. Y. Wang, L. J. Kecskes, K. M. Youssef, C. C. Koch, U. P. Trociewitz, and K. Han, Acta Mater., 53, No. 5: 1521 (2005). Crossref
  44. M. Hoffmann and R. Birringer, Acta Mater., 44, No. 7: 2729 (1996). Crossref
  45. Yu. V. Mil’man and V. I. Trefilov, O Fizicheskoy Prirode Temperaturnoy Zavisimosti Predela Tekuchesti. Mehanizm Razrusheniya Metallov [The Physical Nature of the Temperature Dependence of Yield Stress. Mechanism of Destruction of Metals] (Kiev: Naukova Dumka: 1966), p. 59 (in Russian).
  46. Yu. Milman and V. I. Trefilov, Powder Metall. Met. Ceram., 49, Nos. 7–8: 374 (2010). Crossref
  47. V. I. Trefilov, Yu. V. Milman, and O. N. Grigoriev, Prog. Cryst. Growth Charact., 16: 225 (1988). Crossref
  48. B. A. Galanov and O. N. Grigor’ev, Electron Microscopy and Strength of Materials, No. 13: 4 (2006) (in Russian).
  49. R. P. Reed, Cryogenics, 12, No. 4: 259 (1972). Crossref
  50. Y. Estrin, N. V. Isaev, S. V. Lubenets, S. V. Malykhin, A. T. Pugachov, V. V. Pustovalov, E. N. Reshetnyak, V. S. Fomenko, L. S. Fomenko, S. E. Shumilin, M. Janecek, and R. J. Hellmig, Acta Mater., 54, No. 20: 5581 (2006). Crossref
  51. Z. Huang, L. Y. Gu, and J. R. Weertman, Scr. Mater., 37, No. 7: 1071 (1997). Crossref
  52. Yu. V. Mil’man, Met. Sci. Heat Treat., 27, No. 6: 397 (1985). Crossref
  53. Yu. V. Milman, Mater. Sci. Forum, 426–432: 4399 (2003). Crossref
  54. I. V. Gridneva, Yu. V. Milman, and V. I. Trefilov, Phys. Status Solidi B, 36, No. 1: 59 (1969). Crossref
  55. Yu. Milman, S. Chugunova, and I. Goncharova, Bull. Russ. Acad. Sci.: Phys., 73, No. 9: 1215 (2009). Crossref
  56. I. V. Goncharova, Yu. V. Mil’man, and S. I. Chugunova, 5th Int. Conf. HighMatTech (Oct. 5–8, 2015) (Kyiv: KPI: 2015), p. 256 (in Russian).
  57. A. Kelly, Strong Solids (Oxford: Clarendon Press: 1973), p. 285.
  58. I. V. Gridneva, Yu. V. Milman, and V. I. Trefilov, Phys. Status Solidi A, 14, No. 1: 177 (1972). Crossref
  59. S. J. Lloyd, A. Castellero, F. Giuliani, Y. Long, K. K. McLaughlin, J. M. Molina-Aldareguia, N. A. Stelmashenko, L. J. Vandeperre, and W. J. Clegg, Proc. Royal Soc. A, 461, No. 2060: 2521 (2005). Crossref
  60. A. M. Kovalchenko and Yu. V. Milman, Tribology International, 80: 166 (2014). Crossref
  61. Yu. V. Milman, S. I. Chugunova, I. V. Gonсharova, T. Chudobab, W. Lojkowski, and W. Gooch, Int. J. Refract. Met. Hard Mater., 17, No. 5: 361 (1999). Crossref
  62. K. L. Johnson, J. Mech. Phys. Solids, 18, No. 2: 115 (1970). Crossref
  63. K. L. Johnson, Contact Mechanics (Cambridge: Cambridge University Press: 1987), p. 452. Crossref
  64. Yu. V. Milman, S. I. Chugunova, and I. V. Goncharova, Questions of Atomic Science and Technology. Series: Physics of Radiation Damage and Radiation Materials Science, 74, No. 4: 182 (2011) (in Russian).
  65. Yu. V. Milman, W. Lojkowski, S. I. Chugunova, D. V. Lotsko, I. V. Gridneva, and A. Golubenko, Solid State Phenomena, 94: 55 (2003). Crossref
  66. Yu. V. Milman, D. V. Lotsko, A. N. Belous, and S. N. Dub, Quasicrystalline Materials. Structure and mechanical properties, In: Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology (Eds. M. I. Baraton and I. Uvarova) (Dordrecht: Springer: 2001), pp. 289–296. Crossref
  67. P. H. Boldt, G. C. Weatherly, and J. D. Embury, Int. J. Mater. Res., 15, No. 4: 1025 (2000). Crossref
  68. V. F. Boyko, T. B. Ershova, and A. V. Zaytsev, J. Materials Science, No. 12: 22 (2011) (in Russian).
  69. Yu. V. Milman and G. G. Kurdumova, ‘Rhenium Effect’ on the Improving of Mechanical Properties in Mo, W, Cr and Their Alloys, In: Rhenium and Rhenium Alloys (Eds. B. D. Bryskin) (Warrendale, PA: The Minerals, Metals & Materials Society: 1997), pp.717–728.
  70. A. F. Shchurov, A. V. Kruglov, and V. A. Perevoshchikov, Inorg. Mater., 37, No. 4: 349 (2001). Crossref
  71. A. F. Shchurov, V. A. Perevoshchikov, and A. V. Kruglov, Tech. Phys. Lett., 24, No. 5: 395 (1998). Crossref
  72. P. Haasen, Electronic Processes at Dislocation Cores and Crack Tips, In: Atomistic of Fracture (Eds. R. M. Latanision and J. R. Pickens) (Boston, MA, USA: Springer: 1983), pp. 707–730. Crossref
  73. J. Gilman, J. Appl. Phys., 46, No. 12: 5110 (1975). Crossref
  74. T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Eds. K. V. Lotsch) (Berlin–Heidelberg: Springer-Verlag: 1991), p. 228. Crossref
  75. S. P. Rawal, G. M. Swanson, and W. C. Moshier, J. Mater. Res., 10, No. 7: 1721 (1995). Crossref
  76. L. S. Fomenko, A. V. Rusakova, S. V. Lubenets, and V. A. Moskalenko, Low Temp. Phys., 36, No. 7: 645 (2010). Crossref
  77. G. Sharma, R. V. Ramanujan, T. R. G. Kutty, and N. Prabhu, Intermetallics, 13, No. 1: 47 (2005). Crossref
  78. A. V. Byakova, Yu. V. Milman, and A. A. Vlasov, Science of Sintering, 36, No. 1: 27 (2004). Crossref
  79. A. V. Byakova, Yu. V. Milman, and A. A. Vlasov, Science of Sintering, 36, No. 2: 93 (2004). Crossref
  80. Hardness Testing: ISO/TC 164/SC 3, Standards Catalogue.