Stress Concentrators in Metal Materials in the Conditions of Uniform Compression

P. Yu. Volosevich

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 29.05.2018; final version - 04.06.2018. Download: PDF logoPDF

The proposed model uses modern concepts of mechanics as well as solid-state physics and metal physics to consider the behaviours of single- and polycrystalline states of metal materials in the conditions of uniform compression, when there are two types of model stress concentrators: subtraction and interstitial ones, which are analogous to the majority of the stress risers appeared in the real products. The features of the stress concentrators’ behaviours and the changing sequences of their quantity and power are demonstrated depending on their stability in the spheroidal samples. The differences in the stress increase and relaxation at the tips, which regulate the activity of the known relaxation mechanisms, are pointed out. For both the single- and polycrystalline states, the existence of critical points on the pressure axis, which limit the collective activity of vacancy and dislocation mechanisms of plastic relaxation and transition to the accumulation of only interstitial point defects with the increasing pressure, is predicted. These interstitial defects facilitate a considerable increase of potential energy of atoms in the conditions of elastic decrease of the crystal lattice parameter. The growth is accelerated near the stable stress concentrators. Priorities and peculiarities of participation of the stress concentrators in the formation of the hydrodynamic state of materials are considered. The model allows explaining majority of the experimental results related to mechanical behaviour of materials after the uniform compression. It also predicts the probability of formation of new structural states in the conditions of the rapidly decreased pressure from the certain critical value.

Keywords: stress concentrators, uniform compressions, vacancies, dislocations, hydrodynamic state.

PACS: 61.72.Bb, 61.72.Ff, 61.72.J-, 61.72.Lk, 62.20.mt, 62.50.-p, 81.40.Vw, 83.50.Uv, 83.60.Uv

DOI: https://doi.org/10.15407/ufm.19.02.223

Citation: P. Yu. Volosevich, Stress Concentrators in Metal Materials in the Conditions of Uniform Compression, Usp. Fiz. Met., 19, No. 2: 223—250 (2018) (in Russian), doi: 10.15407/ufm.19.02.223


References (34)  
  1. V. M. Finkel, Fizika Razrusheniya [Physics of Fracture] (Moscow: Metallurgiya: 1970) (in Russian).
  2. T. Ekobori, Fizika i Mekhanika Razrusheniya i Prochnosti Tverdykh Tel [Physics and Mechanics of Fracture and the Strength of Solids] (Moscow: Metallurgiya: 1971) (Russian translation).
  3. G. Neyber, Kontsentratsiya Napriazheniy [Concentration of Stresses] (Moscow–Leningrad: Gostekhizdat: 1947) (Russian translation).
  4. G. V. Uzhik, Prochnost’ i Plastichnost’ Metallov pri Nizkikh Temperaturakh [Strength and Plasticity of Metals at Low Temperatures] (Moscow: Izd. AN SSSR: 1957) (in Russian).
  5. J. F. Knott, Fundamentals of Fracture Mechanics (London: Butterworth: 1973).
  6. R. W. K. Honeycombe, The Plastic Deformation of Metals (2nd ed.) (Edward Arnold: 1984).
  7. Yu. Ya. Meshkov, Fizicheskie Osnovy Razrusheniya Stal’nykh Konstruktsiy (Kiev: Naukova Dumka: 1981) (in Russian).
  8. V. V. Rybin, A. N. Orlov, and V. N. Perevezentsev, Granitsy Zeren v Metallakh [Grain Boundaries in Metals] (Moscow: Metallurgiya: 1980) (in Russian).
  9. P. Yu. Volosevich, Metallofiz. Noveishie Tekhnol., 29, No. 10: 1393 (2007) (in Russian).
  10. P. Yu. Volosevich, Abstracts of the 4-th Int. Conf. ‘Mechanics of Materials Fracture and Structural Strength’ (June 23–27, 2009) (Lviv: Tz OV ‘Prostir-М’), p. 93 (in Ukrainian).
  11. P. Yu. Volosevich, Abstracts of the 4-th Int. Conf. ‘Mechanics of Materials Fracture and Structural Strength’ (June 24–27, 2014) (Lviv: Tz OV ‘Prostir-М’), p. 157 (in Ukrainian).
  12. P. Yu. Volosevych, Usp. Fiz. Met., 12, No. 3: 367 (2011) (in Russian). Crossref
  13. V. I. Zaitsev, Fizika Plastichnosti Gidrodinamicheski Szhatykh Kristallov [Plasticity Physics of Hydrodynamically Compressed Materials] (Kiev: Naukova Dumka: 1983) (in Russian).
  14. V. I. Barbashov and Yu. B. Tkachenko, Fiz. Tekhn. Vysokikh Davleniy, No. 2: 22 (1995) (in Russian).
  15. I. V. Gavrilin, Metallurgiya Mashinostroeniya [Machine Building Metallurgy], No. 4: 10 (2002) (in Russian).
  16. I. V. Gavrilin, Plavlenie i Kristallizatsiya Metallov i Splavov [Melting and Crystallization of Metals and Alloys] (Vladimir: Vladimir State University: 2000) (in Russian).
  17. F. Decremps and L. Nataf, Phys. Rev. Let., 92, No. 15: 157204 (2004). Crossref
  18. P. Gorria, D. Martinez-Blanco, M. J. Perez, and J. A. Blanco, Phys. Rev. B, 80, No. 6: 06442 (2009). Crossref
  19. P. Yu. Volosevich and A. V. Shiyan, Stal’, No. 6: 58 (2015) (in Russian).
  20. V. M. Nadutov, D. L. Vashchuk, P. Yu. Volosevich, V. A. Beloshenko, V. Z. Spuskanyuk, and O. A. Davidenko, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 3: 619 (2013).
  21. L. I. Mirkin, Spravochnik po Rentgenostrukturnomu Analizu Polikristallov [Handbook on X-Ray Analysis of Polycrystals] (Moscow: Gos. Izd-vo Fiz.-Mat. Literatury: 1961), p. 38 (in Russian).
  22. P. Yu. Volosevich and S. Ye. Kondratyuk, Metaloznavstvo ta Obrobka Metaliv, 1, No. 77: 29 (2016) (in Ukrainian).
  23. V. I. Zasimchuk, O. Eh. Zasimchuk, and Yu. G. Gordienko, Metallofiz. Noveishie Tekhnol., 36, No. 4: 445 (2014) (in Russian). Crossref
  24. S. Ye. Kondratyuk, Strukturoutvorennya, Spadkovist’ i Vlastyvosti Lytoi Stali [Structural Formation, Heredity and Properties of As-Cast Steel] (Kyiv: Naukova Dumka: 2010) (in Ukrainian).
  25. R. Z. Valiev and V. G. Khairullin, Fiz. Met. Metalloved., 64, No. 6: 1224 (1987) (in Russian).
  26. P. Yu. Volosevich, Metallofiz. Noveishie Tekhnol., 18, No. 10: 63 (1996) (in Russian).
  27. V. M. Kosevich, V. M. Ievlev, L. S. Palatnik, and A. I. Fedorenko, Struktura Mezhkristallitnykh i Mezhzerennykh Granits [Structure of Intercrystalline and Grain Boundaries] (Moscow: Metallurgiya: 1980) (in Russian).
  28. M. N. Voloshin, Abstracts of Conference ‘High Pressures’ (Kiev: 1989), vol. 4, p. 182.
  29. D. Č. Stefanović, M. Djuričić, V. Petrović, Z. Dukić, and M. M. Ristić, Abstracts of Conference ‘High Pressures’ (Kiev: 1989), vol. 2, p. 182.
  30. V. F. Terent’ev, Ustalost’ Metallicheskikh Materialov [Fatigue of Metal Materials] (Moscow: Nauka: 2003) (in Russian).
  31. V. P. Bevz, V. F. Mazanko, A. F. Filatov, and S. P. Vorona, Metallofiz. Noveishie Tekhnol., 28, Special Issue: 271 (2006) (in Russian).
  32. O. M. Kosevich, V. V. Tokiy, and V. A. Streltsov, Fiz. Met. Metalloved., 45, No. 6: 1135 (1978) (in Russian).
  33. L. B. Zuev, Usp. Fiz. Met., 16, No. 1: 35 (2015) (in Russian). Crossref
  34. V. O. Kharchenko, I. O. Lysenko, O. M. Shchokotova, A. I. Bashtova, D. O. Kharchenko, Yu. M. Ovcharenko, S. V. Kokhan, X. Wu, B. Wen, L. Wu, and W. Zhang, Usp. Fiz. Met., 18, No. 4: 295 (2017) (in Ukrainian). Crossref