Modification of Structure and Surface Properties of Hypoeutectic Silumin by Intense Pulse Electron Beams

Yu. F. Ivanov$^{1,2}$, V. Е. Gromov$^{3}$, S. V. Konovalov$^{4}$, D. V. Zagulyaev$^{3}$, Е. А. Petrikova$^{1}$, А. P. Semin$^{1}$

$^1$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^2$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^4$Academician S. P. Korolev Samara National Research University, 34 Moskovskoe shosse, Samara, Russia

Received: 13.06.2018; final version - 27.06.2018. Download: PDF logoPDF

Methods of contemporary physical materials science are applied for the analysis of structural and phase states, tribological and mechanical properties of hypoeutectic silumin treated by electron beams with parameters as follow: energy density — 10–35 J/cm$^{2}$, pulse duration — 10 µs, number of pulses — 3, pulse-repetition frequency — 0.3 Hz. The initial structure of silumin comprises grains of aluminium-based solid solution, eutectic grains, inclusions of silicon and intermetallic compounds with different shapes and sizes. Electron beam treatment (EBT) with energy density of 20–35 J/cm$^{2}$ causes melting of the surface layer, dissolution of silicon inclusions and intermetallic compounds. A structure of high-speed cellular crystallization is formed, and submicro- and nanosize particles of the second phase are reprecipitated. An average size of crystallization cells are of 0.3–0.5 µm at the irradiated surface and of 0.4–0.8 µm on the lower edge of the layer with the cellular structure. The graded structure and phase states are analysed at a depth of up to 120 µm. The submicron grains of lamellar eutectic are detected at a depth of 15 µm. The lateral sizes of eutectic lamellae are within the range of 25–50 nm. The study indicates that nanohardness of irradiated silumin changes nonmonotonously and reaches its maximum at a depth of about 30 µm, which is approximately four times higher than hardness in the initial state. Hardness of the layer close to the irradiated surface (that is at a depth of about 5 µm) is higher by a factor of about 1.6 than that of as-cast silumin. The paper provides physical interpretation of the changes occurring in structure and properties during irradiation.

Keywords: hypoeutectic silumin, electron beams, cells of high-speed crystallization, eutectic, intermetallic compounds, nanohardness.

PACS: 06.60.Vz, 61.80.Fe, 62.20.Qp, 68.37.Lp, 81.40.Pq, 81.40.Wx, 81.65.Lp, 82.80.Ej, 83.50.Uv

DOI: https://doi.org/10.15407/ufm.19.02.195

Citation: Yu. F. Ivanov, V. Е. Gromov, S. V. Konovalov, D. V. Zagulyaev, Е. А. Petrikova, and А. P. Semin, Modification of Structure and Surface Properties of Hypoeutectic Silumin by Intense Pulse Electron Beams, Usp. Fiz. Met., 19, No. 2: 195—222 (2018), doi: 10.15407/ufm.19.02.195


References (28)  
  1. L. F. Mondolfo, Aluminium Alloys: Structure and Properties (London: Butterworth-Heinemann: 1976). Crossref
  2. N. A. Belov, Fazovyy Sostav Promyshlennykh i Perspektivnykh Alyuminievykh Splavov [Phase Composition of Industrial and Prospective Aluminium Alloys] (Moscow: MISiS: 2010) (in Russian).
  3. A. V. Kurdyumov, Proizvodstvo Otlivok iz Splavov Tsvetnykh Metallov: Uchebnik dlya VUZov [Manufacturing of Casts from Nonferrous Metal Alloys: Textbook for Higher Educational Institutions] (Moscow: Metallurgiya: 1986) (in Russian).
  4. V. E. Gromov, K. V. Aksyonova, S. V. Konovalov, and Yu. F. Ivanov, Usp. Fiz. Met., 16, No. 4: 265 (2015) (in Russian). Crossref
  5. V. E. Gromov, K. V. Sosnin, Yu. F. Ivanov, and O. A. Semina, Usp. Fiz. Met., 16, No. 3: 175 (2015) (in Russian). Crossref
  6. M. M. Makhloufе and H. V. Guthy, J. Light Metals, 1, No. 4: 199 (2001). Crossref
  7. V. Paramo, R. Colas, E. Velasco, and S. Valtierra, J. Mater. Engineer. Perform., 9, No. 6: 616 (2000). Crossref
  8. I. F. Kolobnev, V. V. Krymov, and A. V. Melnikov, Spravochnik Liteyshchika. Tsvetnoe Litye iz Legkikh Splavov [Reference Book for a Caster. Nonferrous Casting of Light Alloys] (2nd edition) (Moscow: Mashinostroenie: 1974) (in Russian).
  9. S. M. Petrov, Povyshenie Kachestva Vtorichnykh Liteinykh Alyuminievykh Splavov [Quality Improvement of the Secondary Casting Aluminium Alloys] (Leningrad: LDNTP: 1988) (in Russian).
  10. V. V. Uglov, Strukturno-Fazovyye Prevrashcheniya v Alyuminii, Zheleze i Ego Splavakh pri Kombinirovannykh Ionnykh i Plazmennykh Vozdeistviyakh [Structure-Phase Transformations in Aluminium, Iron and Its Alloys under Combined Iion and Plasma Influence] (Thesis of Disser. for Dr. Phys.-Math. Sci.) (Minsk: Belarus State University: 2006) (in Russian).
  11. V. L. Yakushin, Russian Metallurgy (Metally), 2005, No. 2: 104 (2005).
  12. E. A. Petrikova, A. P. Laskovnev, and Yu. F. Ivanov, Modifikatsiya Struktury i Svoistv Ehvtekticheskogo Silumina Ehlektronno-Ionno-Plazmennoy Obrabotkoy [Modification of Structure and Properties of Eutectic Silumin by Electron-Ion-Plasma Treatment] (Minsk: Navuka: 2013) (in Russian).
  13. V. Rotshtein, Yu. Ivanov, and A. Markov, Materials Surface Processing by Directed Energy Techniques (Ed. Y. Pauleau) (Amsterdam: Elsevier Science: 2006), Ch. 6, pp. 205–240. Crossref
  14. Ehvolutsiya Struktury Poverkhnostnogo Sloya Stali, Podvergnutoy Ehlektronno-Ionno-Plazmennym Metodam Obrabotki [Evolution of Structure in the Surface Layer of Steel Processed by Electron-Ion-Plasma Method of Treatment] (Eds. N. N. Koval and Yu. F. Ivanov) (Tomsk: Publishing House of NTL: 2016) (in Russian).
  15. Yu. F. Ivanov, E. A. Petrikova, A. D. Teresov, and P. Moskvin, Adv. Mater. Res., 872: 157 (2014). Crossref
  16. Y. Hao, B. Gao, G. F. Tu, H. Cao, S. Z. Hao, and C. Dong, Appl. Surf. Sci., 258, No. 6: 2052 (2012). Crossref
  17. B. Gao, S. Z. Hao, J. X. Zou, L. M. Jiang, J. Y. Zhou, and C. Dong, Trans. Mater. Heat Treatment, No. 5: 1029 (2004).
  18. B. Gao, Y. Hao, W. F. Zhuang, G. F. Tu, W. X. Shi, S. W. Li, S. Z. Hao, C. Dong, and M. C. Li, Phys. Proc., 18: 187 (2011). Crossref
  19. Y. Hao, B. Gao, G. F. Tu, S. W. Li, and C. Dong, Nucl. Instrum. Methods Phys. Res. B, 269, No. 13: 1499 (2011). Crossref
  20. Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao, and C. Dong, Appl. Surf. Sci., 257, No. 9: 3913 (2011). Crossref
  21. Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao, and C. Dong, Trans. Mater. Heat Treatment, No. 9: 115 (2010).
  22. Y. Hao, B. Gao, G. F. Tu, Z. Wang, and C. Z. Hao, Mater. Sci. Forum., 675–677: 693 (2011). Crossref
  23. J. An, X. X. Shen, Y. Lu, Y. B. Liu, R. G. Li, C. M. Chen, and M. J. Zhang, Surf. Coat. Technol., 200, Nos. 18–19: 5590 (2006). Crossref
  24. J. An, X. X. Shen, and Y. Lu, Wear, 261, No. 2: 208 (2006).
  25. S. Hao, S. Yao, J. Guan, A. Wu, P. Zhong, and C. Dong, Curr. Appl. Phys., 1, Nos. 2–3: 203 (2001). Crossref
  26. T. Grosdidier, J. X. Zou, N. Stein, C. Boulanger, S. Z. Hao, and C. Dong, Scripta Materialia, 58, No. 12: 1058 (2008). Crossref
  27. Yu. F. Ivanov, Struktura i Svoistva Perspektivnykh Metallicheskikh Materialov [Structure and Properties of Prospective Metallic Materials] (Ed. A. I. Potekaev) (Tomsk: Publishing House of NTL: 2007) (in Russian).
  28. A. P. Babichev, Fizicheskie Velichiny: Spravochnik [Physical Values: Handbook] (Eds. I. S. Grigoriev, E. S. Meilikhov) (Moscow: Energoatomizdat: 1991) (in Russian).