Correlation between Surface Tension, Work of Adhesion in Liquid Metals/Ceramic Systems, and Acoustic Parameters

Z. Hadef, A. Doghmane, K. Kamli, Z. Hadjoub

Badji Mokhtar University, 23000 Annaba, Algeria

Received: 01.05.2018; final version - 03.05.2018. Download: PDF logoPDF

In the paper, a correlation between acoustic velocities, elastic moduli, and densities, with surface tension, and work of adhesion of different liquid metals on a given ceramic is studied and demonstrated. Simulation program is developed and used for scanning acoustic microscopy under operating conditions, which favour the generation of acoustic waves. As found, for the given systems, all investigated acoustic parameters exhibit good dependences with both surface tension and work of adhesion. Analysis and quantification of the results lead to the determination of semi-empirical formulas. The importance of the deduced formulas lies in the possibility of prediction of surface tension and work of adhesion of such metal/ceramic interfaces depending on the elastic and acoustic characteristics.

Keywords: surface tension, work of adhesion, acoustic velocities, elastic constants, ceramics, liquid metals, interfaces.

PACS: 43.20.+g, 62.20.De, 68.03.Cd, 68.08.Bc, 68.08.De, 68.35.Np, 68.60.Bs, 81.05.Mh, 81.40.Jj, 81.70.Bt

DOI: https://doi.org/10.15407/ufm.19.02.168

Citation: Z. Hadef, A. Doghmane, K. Kamli, and Z. Hadjoub, Correlation between Surface Tension, Work of Adhesion in Liquid Metals/Ceramic Systems, and Acoustic Parameters, Usp. Fiz. Met., 19, No. 2: 168—184 (2018), doi: 10.15407/ufm.19.02.168


References (43)  
  1. J. G. Li, Mat. Let., 22, Iss. 3–4: 169 (1995). Crossref
  2. P. H. Mayrhofer, D. Sonnleitner, M. Bartosik, and D. Holec, Surf. Coat. Technol., 244: 52 (2014). Crossref
  3. P. Seiler, M. Baker, and J. Roesler, J. Comput. Mater. Sci., 80: 27 (2013). Crossref
  4. N. J. Ekins-Daukes, K.-H. Lee, L. Hirst, A. Chan, M. Führer, J. Adams, B. Browne, K. W. J. Barnham, P. Stavrinou, and J. Connolly, J. Phys. D: Appl. Phys., 46: 264007 (2013). Crossref
  5. Y. Imanaka, H. Amada, F. Kumasaka, N. Takahashi, T. Yamasaki, M. Ohfuchi, and C. Kaneta, Adv. Eng. Mater., 15, No. 11: 1129 (2013). Crossref
  6. Q. Fu and T. Wagner, Surf. Sci. Rep., 62, Iss. 11: 431 (2007). Crossref
  7. G. Triantafyllou and J. T. S. Irvine, J. Mat. Sci., 51, No. 4: 1766 (2016). Crossref
  8. A. Kar and A. K. Ray, Mat. Let., 61, Nos. 14–15: 2982 (2007). Crossref
  9. B. Cros, M. F. Vallat, and G. Despaux, Appl. Surf. Sci., 126, Nos. 1–2: 159 (1998). Crossref
  10. A. Briggs, Advances in Acoustic Microscopy (New York: Plenum Press: 1995), vol. 1. Crossref
  11. L. Viktorov, Rayleigh and Lamb Waves (New York: Plenum Press: 1967).
  12. A. Doghmane, S. Douafer, and Z. Hadjoub, J. Optoelec. Adv. Mat., 16, Nos. 11–12: 1339 (2014).
  13. Z. Hadjoub, I. Beldi, and A. Doghmane, C. R. Phys., 8, Nos. 7–8: 948 (2007). Crossref
  14. C. G. R. Sheppard and T. Wilson, Appl. Phys. Lett., 38, No. 11: 858 (1981). Crossref
  15. L. M. Brekhovskikh, Wave in Layered Media (New York: Academic Press: 1980).
  16. L. M. Breekhovskikh and O. A. Godin, Acoustics of Layered Media I (Berlin: Springer-Verlag: 1990). Crossref
  17. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, Mat. Let., 61, No. 3: 813 (2007). Crossref
  18. S. Blairs, J. Coll. Interface Sci., 302, No. 1: 312 (2006). Crossref
  19. B. J. Keene, Int. Mat. Rev., 38, No. 4: 157 (1993). Crossref
  20. A. F. Crawley, Int. Met. Rev., 19, No. 1: 32 (1974). Crossref
  21. T. Baykara, R. H. Hauge, N. Noren, P. Lee, and J. L. Margrave, High Temp. Sci., 32: 113 (1991).
  22. P. J. Flory, R. A. Orwall, and A. Vrij, J. Am. Chem. Soc., 86, No. 17: 3507 (1964). Crossref
  23. D. J. J. Pandey, J. Chem. Soc., Faraday Trans. 1, 76: 1215 (1980). Crossref
  24. R. K. Mishra, G. Thomas, and R. L. Mishra, J. Am. Ceram. Soc., 62, Nos. 5–6: 293 (1979). Crossref
  25. B. R. Chaturvedi, R. P. Pandey, and J. D. Pandey, J. Chem. Soc., Faraday Trans. 1, 78, No. 4: 1039 (1982). Crossref
  26. N. Auerbach, Experientia, 4: 473 (1948).
  27. S. W. Mayer, J. Phys. Chem., 67, No. 10: 2160 (1963). Crossref
  28. N. Y. Taranets and Y. V. Naidich, Powder Metall. Met. Ceram., 35, Nos. 5–6: 282 (1996). Crossref
  29. A. Passerone, M.L. Muolo, and F. Valenza, J. Mater. Eng. Perform., 25, Iss. 8: 3330 (2016). Crossref
  30. D. Chatain, I. Rivollet, and N. Eustathopoulos, J. Chem. Phys., 83: 561 (1986). Crossref
  31. J. G. Li, Ceramic Int., 20, Iss. 6: 391 (1994). Crossref
  32. J. G. Li, J. Am. Ceram. Soc., 75, Iss. 11: 3118 (1992). Crossref
  33. Ju. V. Naidich, Progr. Surface Membrane Sci., 14: 353 (1981). Crossref
  34. M. C. Munoz, S. Gallego, J. I. Beltran, and J. Cerda, Surf. Sci. Rep., 61, No. 7: 303 (2006). Crossref
  35. J. G. Li, Rare Metals, 12: 84 (1993).
  36. M. Humenik and W. D. Kingery, J. Am. Ceram. Soc., 37, No. 1: 18 (1954). Crossref
  37. F. L. Harding and D. R. Rossington, J. Am. Ceram. Soc., 53, No. 2: 87 (1970). Crossref
  38. J. G. Li and H. Hausner, Mat. Let., 14, Nos. 5–6: 329 (1992). Crossref
  39. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met., 17, No. 4: 375 (2016). Crossref
  40. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Defect and Diffusion Forum, 280–281: 29 (2008). Crossref
  41. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  42. V. A. Tatarenko and T. M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003). Crossref
  43. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met., 18, No. 2: 155 (2017). Crossref