Effect of Cyclic Martensitic $\gamma$–$\epsilon$–$\gamma$ Transformations on Diffusion Characteristics of Carbon in an Iron–Manganese Alloy

V. Y. Bondar, V. E. Danilchenko, V. F. Mazanko, O. V. Filatov, V. E. Iakovlev

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.02.2018; final version – 30.03.2018. Download: PDF logoPDF

Carbon-diffusion characteristics in metastable Г18C2 iron–manganese alloy after the cyclic $\gamma$–$\epsilon$–$\gamma$ (f.c.c.–h.c.p.–f.c.c.) martensitic transitions were investigated using the radioactive-isotope method. As shown, the process of carbon transport acceleration in the alloy phase-hardened by means of the $\gamma$–$\epsilon$–$\gamma$ transformations was caused by two independent mechanisms. They are as follow: athermal one realized via the stress field occurrence under the cyclic martensitic transitions and thermoactivated one realized during subsequent diffusion annealing due to low-angle subboundaries as well as the one-dimensional and two-dimensional crystal structure defects in f.c.c. austenite and h.c.p. $\epsilon$-martensite generated during these transitions. After the cyclic $\gamma$–$\epsilon$–$\gamma$ martensitic transformations, the diffusion coefficient of carbon at low temperatures (100–350°C) increased by more than three orders of magnitude. In this case, the diffusion coefficient at 325°C corresponds to the stationary diffusion coefficient at 900°C. Maximum carbon-diffusion coefficient rising was observed when number of thermal cycles was increased up to 100 and maximum structure defects density increasing was fixed. Phase composition variation was as an additional cause of carbon-diffusion characteristics changing during the $\gamma$–$\epsilon$–$\gamma$ cycling and subsequent diffusion annealing.

Keywords: diffusion, martensite, austenite, radioisotope, dislocation, stacking fault defect.

PACS: 64.60.Bd, 64.70.kd, 66.10.cd, 66.30.Lw, 81.16.Hc, 81.30.Kf

DOI: https://doi.org/10.15407/ufm.19.01.070

Citation: V. Y. Bondar, V. E. Danilchenko, V. F. Mazanko, O. V. Filatov, and V. E. Iakovlev, Effect of Cyclic Martensitic $\gamma$–$\epsilon$–$\gamma$ Transformations on Diffusion Characteristics of Carbon in an Iron–Manganese Alloy, Usp. Fiz. Met., 19, No. 1: 70–94 (2018), doi: 10.15407/ufm.19.01.070


References (35)  
  1. B. S. Bokshtein, Diffuziya v Metallakh [Diffusion in Metals] (Moscow: Metallurgiya: 1978) (in Russian).
  2. V. B. Brik, Diffuzyia i Fazovye Prevrashchenyia v Metallakh i Splavakh [Diffusion and Phase Transformations in Metals and Alloys] (Kiev: Naukova Dumka: 1985) (in Russian).
  3. D. S. Gertsriken, V. F. Mazanko, V. M. Tyshkevich, and V. M. Falchenko, Massoperenos v Metallakh pri Nizkikh Temperaturakh v Usloviyakh Vneshnikh Vozdeistviy [Mass Transfer in Metals at Low Temperatures under External Actions] (Kiev: RIO IMF: 2001) (in Russian).
  4. V. A. Andryushchenko, O. V. Bavol, T. L. Blinokhvatov, A. G. Garan, E. M. Dzevin, Metallofiz. Noveishie Tekhnol., 32, No. 7: 883 (2010) (in Russian).
  5. I. M. Dzevin, Nanoscale Res. Lett., 10: 117 (2015). Crossref
  6. L. N. Larikov, Metallofiz. Noveishie Tekhnol., 17, No. 1: 3 (1995) (in Russian).
  7. S. Schumacher, R. Birringer, R. Strauss, and H. Gleiter, Acta Met., 37: 2485 (1989). Crossref
  8. H. Gleiter, phys. status solidi (b), 172: 5 (1992). Crossref
  9. P. L. Gruzin, G. V. Kurdjumov, and E. V. Kuznetsov, Problemy Metallovedeniya i Fizika Metallov, 4: 153 (1955) (in Russian).
  10. V. B. Brik, A. M. Kumok, B. I. Nikolin, and V. M. Falchenko, Metally, No. 4: 131 (1981) (in Russian).
  11. V. A. Andrushschenko and E. N. Dzevin, Materials Structure, 6, No. 2: 122 (1999).
  12. V. A. Andryushchenko, O. V. Bavol, T. L. Blinokhvatov, A. G. Garan, and E. M. Dzevin, Metallofiz. Noveishie Tekhnol., 31, No. 9: 1257 (2009).
  13. Yu. N. Koval, D. S. Gertsriken, V. P. Bevz, V. M. Mironov, V. V. Alekseeva, and T. V. Mironova, Metallofiz. Noveishie Tekhnol., 32, No. 10: 1293 (2010) (in Russian).
  14. K. A. Malyshev, V. V. Sagaradze, I. P. Sorokin, N. D. Zemtsova, V. A. Teplov, and A. I. Uvarov, Fazovyy Naklep Austenitnykh Splavov na Zhelezonikelevoy Osnove [Phase Hardening of Iron–Nickel-Based Austenite Alloys] (Moscow: Nauka: 1982) (in Russian).
  15. V. V. Sagaradze,V. E. Danilchenko, Ph. L’Hetitier, and V. A. Shabashov, Mat. Sci. Eng., A, 337: 146 (2002). Crossref
  16. V. P. Bevz, V. J. Bondar, D. V. Veriha, V. Yu. Danilchenko, and V. F. Mazanko, Metallofiz. Noveishie Tekhnol., 30, No. 10: 1307 (2008) (in Ukrainian).
  17. V. Iu. Danilchenko, V. F. Mazanko, and V. Ie. Yakovlev, Metallofiz. Noveishie Tekhnol., 31, No. 12: 1621 (2009) (in Ukrainian).
  18. L. I. Lysak and B. I. Nikolin, Fizicheskie Osnovy Termicheskoy Obrabotki Stali [Physical Basis of Heat Treatment of Steel] (Kiev: Tekhnika: 1975) (in Russian).
  19. S. D. Gertsriken and V. M. Falchenko, Voprosy Fiziki Metallov i Metallovedeniya, No. 16: 154 (1962) (in Russian).
  20. M. S. Paterson, J. Appl. Phys., 23: 805 (1952). Crossref
  21. B. E. Warren and E. P. Warekols, Acta Metall., 3: 473 (1955). Crossref
  22. Ya. D. Vishnyakov, Defekty Upakovki v Kristallicheskoy Strukture [Stacking Faults in the Crystal Structure] (Moscow: Metallurgiya: 1970) (in Russian).
  23. B. E. Warren, Progress in Metal Physics, 8: 147 (1959). Crossref
  24. J. W. Christian, Acta Cryst., 7: 415 (1954). Crossref
  25. B. Mitra and N. C. Halder, Acta Cryst., 17: 817 (1964). Crossref
  26. I. N. Bogachev and V. F. Egolaev, Struktura i Svoistva Zhelezomargantsevykh Splavov [Structure and Properties of the Iron–Manganese Alloys] (Moscow: Metallurgiya: 1973) (in Russian).
  27. L. I. Lysak and I. B. Goncharenko, Fiz. Met. Metalloved., 31: 1004 (1971) (in Russian).
  28. F. Weinberg, Progress in Metal Physics (Eds. B. Chalmers and R. King) (New York: Academic Press: 1959), vol. 8, p. 105.
  29. O. G. Sokolov and K. B. Katsov, Zhelezomargantsevye Splavy [Iron–Manganese Alloys] (Kiev: Naukova Dumka: 1982) (in Russian).
  30. Yu. N. Petrov, Defekty i Bezdiffuzionnoe Prevrashchenie v Stali [Defects and Diffusionless Transformation in Steel] (Kiev: Naukova Dumka: 1978) (in Russian).
  31. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Defect and Diffusion Forum, 280–281: 29 (2008). Crossref
  32. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofizika i Noveishie Tekhnologii, 25, No. 10: 1303 (2003) (in Ukrainian).
  33. T. M. Radchenko and V. A. Tatarenko, Defect and Diffusion Forum, 273: 525 (2008). Crossref
  34. V. V. Skorokhod and Yu. M. Solonin, Defekty Upakovky v Perekhodnykh Metallakh [Stacking Faults in Transition Metals] (Kiev: Naukova Dumka: 1976) (in Russian).
  35. B. M. Mogutnov, I. A. Tomilin, and L. A. Shvartsman, Termodinamika Zhelezouglerodistykh Splavov [Thermodynamics of Iron–Carbon Alloys] (Moscow: Metallurgiya: 1972) (in Russian).