Secondary Ion Emission during the Proton Bombardment of Metal Surfaces

V. T. Cherepin$^{1}$, M. O. Vasylyev$^{1}$, I. M. Makeeva$^{1}$, V. M. Kolesnik$^{1}$, S. M. Voloshko$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 28.11.2017; final version - 22.01.2018. Download: PDF logoPDF

Secondary ion mass spectrometry (SIMS) is successfully used for fundamental and applied studies of the solid surfaces. Thus, it is important to know regularities in the secondary ion emission (SIE) induced by the primary beams of the inert or chemically active elements. The SIE intensity is found to be dependent not only on the surface sputtering processes (the intensity increases with the atomic number of the bombarding ion), but on the ionization probability of the sputtered atoms (the probability is strongly dependent on the physical and chemical states of target surface and experimental conditions) too. Analytical capabilities of SIMS might be improved by the use of light ions producing low sputtering and causing minimum surface erosion. The goal of the present review paper is a systematic study of various SIE aspects for metals, alloys, and chemical compounds in the case when the surface is bombarded with lightest ions—protons. To reveal the possibilities of proton applications in SIMS, the target surface was also bombarded with argon ions. The SIE regularities for metal targets were studied on the ion microprobe analyser equipped with a spherical 180°C sector energy analyser and a system, which pumps gas into the chamber. This made it possible to investigate not only the SIE factors, but also the secondary ion energy distribution and the change of the emission character at the target interaction with active gases. The SIE coefficients are measured for metals of I–III large periods. The use of primary protons and argon ions leads to a similar dependence of the SIE differential coefficients on the target atomic number. The SIE coefficients for primary protons and argon ions for the same elements are similar. Sputtering coefficients for the Ar$^{+}$ ions are known to exceed those for protons. The fact that the metal-ion emission intensity for bombardment with lighter ions commensurate with a signal of secondary ions sputtered from the surface by heavy species is of a high practical importance for use of protons with analytical purposes. This fact may be explained as a result of extraordinary high ionization probability due to H$^{+}$ ions. However, along with the general regularities based on the nature of materials at hand, there are essential differences in mechanisms of the atom ionization for the sputtering by protons and inert gas ions. Therefore, we have investigated the energy distributions of metal secondary ions ejected from surface bombarded with H$^{+}$ and Ar$^{+}$ ions. It is shown that, in the case of proton bombardment of multicomponent targets, a partial suppression of the structural, phase, and other matrix effects is observed. These effects as well as the increasing ionization probability of metal atoms sputtered by protons are quantitatively described concerning the important role of the local surface bonds in the ionization mechanism.

Keywords: secondary ion emission, secondary ion mass spectrometry, protons, argon ions, metal surface, electron work function.

PACS: 07.75.+h, 14.20.Dh, 34.35+a, 41.75.Ak, 61.80.Lj, 68.49.Sf


Citation: V. T. Cherepin, M. O. Vasylyev, I. M. Makeeva, V. M. Kolesnik, and S. M. Voloshko, Secondary Ion Emission during the Proton Bombardment of Metal Surfaces, Usp. Fiz. Met., 19, No. 1: 49—69 (2018), doi: 10.15407/ufm.19.01.049

References (52)  
  1. V. I. Veksler, Vtorichnaya Ionnaya Ehmissiya Metallov [Secondary Ion Emission of Metals] (Moscow: Nauka: 1978) (in Russina).
  2. V. T. Cherepin and M. A. Ivanov, Vtorichnaya Ionno-Ionnaya Ehmissiya Metallov i Splavaov [Secondary Ion-Ion Emission of Metals and Alloys] (Moscow: Nauka: 1975) (in Russina).
  3. V. T. Cherepin, Ionnyy Zond [ion Probe] (Kiev: Naukova Dumka: 1981) [in Russian].
  4. V. T. Cherepin, Ionnyy Mikrozondovyy Analiz [Ion Microprobe Analysis] (Kiev: Naukova Dumka: 1981) (in Russina).
  5. V. T. Cherepin and M. A. Vasiliev, Metody i Pribory dlya Analiza Poverkhnosti Materialov [Methods and Devices for Analysis of the Material Surfaces] (Kiev: Naukova Dumka: 1982) (in Russian).
  6. V. T. Cherepin, Secondary Ion Mass Spectroscopy of Solid Surfaces (Oxford: Alden Press: 1987).
  7. V. E. Yurasova, Vzaimodeistvie Ionov s Poverkhnostyu [Interaction of Ions with Surface] (Moscow: Prima В: 1999) (in Russina).
  8. R. J.-B. Castaing and G. Slodzian, C.R. Acad. Sci. B, 251: 1010 (1960).
  9. Ya. M. Fogel, Sov. Phys. Usp., 10: 17 (1967). Crossref
  10. G. Slodzian and J.-F. Hennequin, C. R. Acad.Sci., B, 263, No. 22: 1246 (1966).
  11. A. Benninghoven, Surf. Sci., 53, No. 3: 596 (1975). Crossref
  12. A. Benninghoven, F. G. Rudenauer, and H. W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends, (New York: Wiley: 1987).
  13. L. A. Giannuzzi, B. I. Prenitzer, and B. W. Kempshall, Ion-Solid Interaction, (Berlin: Springer: 2005).
  14. J. C. Lee, H. J. Kang, K. J. Kim, Y. S. Kim, and D. W. Moon, Surf. Sci. 324: 338 (1995). Crossref
  15. V. P. Ivanov and S. N. Trukhan, J. Struct. Chem., 55, No. 5: 995 (2014). Crossref
  16. S. Fajardoa, D. M. Bastidasa, M. P. Ryanb, M. Criadoc, D. S. McPhailb, and R. J. H. Morrisd, Appl. Surf. Sci., 288: 423 (2014). Crossref
  17. V. V. Khvostov, I. K. Khrustachev, K. F. Minnebaev, E. Yu. Zykova, and V. E. Yurasova, Vacuum, 100: 84 (2014). Crossref
  18. K. F. Minnebaev, A. A. Khaidarov, and V. E. Yurasova, Surface Investigation X-Ray, Synchrotron and Neutron Techniques, 9: No. 5: 1107 (2015). Crossref
  19. S. A. Firstov, N. A. Krapivka, M. A. Vasiliev, S. I. Sidorenko, and S. M. Voloshko, Powder Metallurgy, No. 07/08: 98 (2016) (in Russina).
  20. M. A. Vasiliev, A. A. Kosyachkov, I. N. Makeeva, and V. T. Cherepin, Poverkhnost’, No. 1: 103 (1982) (in Russian).
  21. N. Kh. Dzhemelev and R. T. Kurbanov, Poverkhnost’, No. 1: 56 (1984).
  22. M. A. Vasiliev and I. N. Makeeva, Zavodskaya Laboratoriya. Diagnostika Materialov, 64, No. 9: 26 (1997).
  23. M. A. Vasiliev, I. N. Dubinskiy, A. A. Kosyachkov, I. N. Makeeva, S. P. Chenakin, V. T. Cherepin, and V. G. Kostyuchenko, Sposob Mass-Spektroskopicheskogo Posloinogo Analiza Tverdykh Tel, A. s. No. 1138855 (Published 07.02.1985. Bulletin No. 5).
  24. M. Junack, A. Eicke, W. Sichtermann, A. Benninghoven, Ion Formation from Organic Solids (Springer Series in Chemical Physics, 25) (Berlin, Heidelberg: Springer: 1983), p. 177. Crossref
  25. N. J. Popczun, L. Breuer, A. Wucher, and N. Winograd, J. Am. Soc. Mass. Spectrom., 28: 1182 (2017). Crossref
  26. J. Brison, S. Muramoto, and D. G. Castner, J. Phys. Chem. C, 114, No. 12: 5565 (2010). Crossref
  27. J. Matsuo, S. Ninomiya, H. Yamada, K. Ichiki, Y. Wakamatsu, M. Hada, T. Seki, and T. Aoki, Surf. Interfaсe Anal., 42, Nos. 10–11: 1612 (2010). Crossref
  28. M. L. Yu and N. D. Lang, Nucl. Instr. Meth. Phys. Res. B, 14: 403 (1986). Crossref
  29. G. Slodzian, Surf. Sci., 48: 161 (1975). Crossref
  30. M. L. Yu, Nucl. Instr. Meth. Phys. Res. B, 18: 542 (1986). Crossref
  31. H. Oechsner, Z. Sroubek, Surf. Sci.,127: 10 (1983). Crossref
  32. P. Sigmund, Phys. Rev., 184, No. 2: 416 (1969). Crossref
  33. M. I. Guseva and Yu. V. Martynenko, J. Nucl. Mater., 63, No. 1: 241 (1976). Crossref
  34. N. V. Plishivtsev, Fizicheskie Problemy Katodnogo Rasspyleniya [Physical Problems of Cathode Sputtering] (Москва: Izdatelstvo IAEh AN SSSR: 1979).
  35. A. A. Kosyachkov, Poverkhnost’, No. 4: 25 (1994).
  36. V. T. Cherepin, A. A. Kosyachkov, I. N. Dubinskiy, and V. Eh. Is’yanov, Pribory i Tekhnika Ehksperimenta, No. 1: 152 (1986) (in Russian).
  37. V. V. Nemoshkalenko, Ehlektronnaya Spektroskopiya Kristallov [Electron Spectroskopy of Crystals] (Kiev: Naukova Dumka: 1976) (in Russian).
  38. A. A. Kosyachkov, Poverkhnost’, No. 9: 128 (1989) (in Russian).
  39. K. Wittmaack, Phys. Scr., 6: 71 (1983). Crossref
  40. M. A. Vasiliev, A. A. Ksyachkov, I. N. Makeeva, and V. T. Cherepin, Metallofizika, 4, No. 3: 69 (1982) (in Russian).
  41. V. T. Сherepin, A. A. Kosyachkov, I. N. Makeeva, Secondary Ion Mass Spectrometry-SIMS IV (Eds. A. Benninghoven, J. Okano, R. Shimizu, and H. W. Werner) (Berlin Heidelberg: Springer-Verlag: 1984), p. 57.
  42. W. Gerhard, Z. Phys. B, 22: 31 (1975).
  43. K .Wittmaack, Phys. Lett. A, 69: 322 (1979). Crossref
  44. I. S. Bitenskiy and Eh. S. Paralis, Zhurnal Tekhnicheskoy Fiziki, 48: 1941 (1978) (in Russian).
  45. J. M. Schroeer, T. N. Rhodin, and R. C. Bradley, Surf. Sci., 34, No. 3: 571 (1973). Crossref
  46. K. F. Minnebaev, A. E. Saburov, and V. S. Chernysh, Poverkhnost’, No. 11: 150 (1987) (in Russian).
  47. O. A. Bannykh, P. B. Budberg, and S. P. Alsova, Diagrammy Sostoyaniya Dvoinykh i Mnogokomponenthykh Sistem na osnove Zheleza [State Diagrams of Binary and Multicomponent Iron-Based Systems] (Mosow: Metallurgiya: 1986) (in Russian).
  48. M. A. Vasil’ev, А. А. Kosyachkov, I. N. Makeeva, and V. T. Cherepin, Metallofizika, 9, No. 1: 43 (1987) (in Russian).
  49. M. A. Vasil’ev, A. A. Kosyachkov, I. N. Makeeva, and V. T. Cherepin, Poverkhnost’, No. 8: 39 (1987) (in Russian).
  50. A. A. Kosyachkov, V. T. Cherepin, and S. M. Chichkan’, Pis’ma v Zhurnal Tekhnicheskoj Fiziki, 17, No. 5, 61 (1991).
  51. K. W. Frese, Surf. Sci., 182: 85 (1987). Crossref
  52. H. Zuchner and T. Bruning, J. Alloys and Compounds, 231: 347 (1995). Crossref