Justification of Application of Complex-Quantitative Methods for an Estimation of Qualities of Materials in the Conditions of a High-Speed Load

V. V. Kurylyak, G. I. Khimicheva

Kyiv National University of Technologies and Design, 2 Nemirovich-Danchenko Str., 01011 Kyiv, Ukraine

Received: 26.09.2016. Download: PDF

Due to the fact that in the modern metrological database there is no clear methodology for estimating quality of materials under the conditions of shock and high-speed loads, in this work the analysis of dynamic properties of metallic materials at the impulsive loads is carried out and presented. It is shown that shock loads characterize material on a viewpoint of dynamic properties (i.e. fracture characteristics) are key and dominant at the impulsive loads. This means that shock loads characterize the quality of materials under the high-speed loads. Based on the analysis of the methods of assessment of the quality of materials, as well as the analysis of their behaviour in the conditions of shock load, it concluded that the main and governing characteristics defining their quality are the dynamic characteristics. Based on these characteristics, a system of indicators of the quality of the loaded materials is constructed. The analysis of results of the modern methods for assessing quality of objects in conditions of impact loads has shown series of problems due to the low-quality assessment of the materials. It is demonstrated that the results of the analysis of experimental methods for testing of materials via impact way, the basic characteristics and parameters affect the final properties of the materials. Based on the adduced arguments, we formulated the basic approach principle defining the main criteria of the loaded materials’ quantity (dynamical characteristics). Analysing contemporary experience in the using of complex-quantitative methods, the most suitable methods for assessment of materials under the conditions of high load are selected. Presented list of materials contributed to the solution of the problem of creating an alternative mechanism for evaluating the quality of the loaded materials (along with expert way). Complex-quantitative methods are the best suited for use in experimental tests, and are obvious and easily reproducible. If there are recommendations on application of the methods, the latter can be easily implemented in the production and education process.

Keywords: Complex-quantitative method, high-speed load, the system for evaluating the quality of materials.

PACS: 06.60.Jn, 46.40.Cd, 62.50.Ef, 83.50.-v, 87.55.Qr

DOI: https://doi.org/10.15407/ufm.17.04.375

Citation: V. V. Kurylyak and G. I. Khimicheva, Justification of Application of Complex-Quantitative Methods for an Estimation of Qualities of Materials in the Conditions of a High-Speed Load, Usp. Fiz. Met., 17, No. 4: 375—399 (2016) (in Ukrainian), doi: 10.15407/ufm.17.04.375


References (32)  
  1. M. A. Krivoglaz, Metally, Ehlektrony, Reshetka [Metals, Electrons, Lattice] (Kiev: Naukova Dumka: 1975), p. 355 (in Russian).
  2. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin: Springer: 1996). Crossref
  3. V. B. Molodkin and E. A. Tikhonova, Fizika Metallov i Metallovedenie, 24, No. 3: 385 (1967) (in Russian).
  4. V. A. Tatarenko and T. M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003). Crossref
  5. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Metallofizika i Noveishie Tekhnologii, 28, No. 12: 1699 (2006); arXiv:1406.0147.
  6. V. A. Tatarenko and T. M. Radchenko, Uspehi Fiziki Metallov, 3, No. 2: 111 (2002) (in Ukrainian). Crossref
  7. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofizika i Noveishie Tekhnologii, 25, No. 10: 1303 (2003) (in Ukrainian).
  8. I. Yu. Sagalyanov, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Uspehi Fiziki Metallov, 11, No. 1: 95 (2010) (in Ukrainian). Crossref
  9. T. M. Radchenko, V. A. Tatarenko, and H. Zapolsky, Solid State Phenomena, 138: 283 (2008). Crossref
  10. T. M. Radchenko and V. A. Tatarenko, Uspehi Fiziki Metallov, 9, No. 1: 1 (2008) (in Ukrainian). Crossref
  11. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, and Yu. I. Prylutskyy, Phys. Lett. A, 378: 2270 (2014). Crossref
  12. V. B. Molodkin, Fizika Metallov i Metallovedenie, 25, No. 3: 410 (1968) (in Russian).
  13. V. B. Molodkin, Fizika Metallov i Metallovedenie, 27, No. 4: 582 (1969) (in Russian); V. B. Molodkin, Metallofizika, 2, No. 1: 3 (1980).
  14. A. I. Himicheva and V. V. Kurylyak, Eastern-European Journal of Enterprise Technologies, 5, No. 1 (77): 70 (2015) (in Ukrainian).
  15. V. V. Kurylyak and G. I. Khimicheva, Bulletin of the National Technical University ‘Kharkiv Polytechnic Institute’. Series ‘Problems of Mechanical Drive», No. 35 (1144): 80 (2015) (in Ukrainian).
  16. G. I. Khimicheva and V. V. Kurylyak, Bulletin of the Kyiv National University of Technologies and Design, No. 6 (92): 67 (2015) (in Ukrainian).
  17. G. I. Khimicheva and V. V. Kurylyak, Bulletin of the National Technical University ‘Kharkiv Polytechnic Institute’. Series ‘New Solutions in Modern Technologies’, No. 62 (1171): 40 (2015) (in Ukrainian).
  18. G. I. Khimicheva and V. V. Kurylyak, Visnyk of Chernihiv State Technological University. Series ‘Technical Sciences’, No. 2 (78): 76 (2015) (in Ukrainian).
  19. V. V. Kurylyak, Technology Audit and Production Reserves, No. 4 (3): 53 (2016) (in Ukrainian).
  20. A. I. Khimicheva and V. V. Kurylyak, Bulletin of the National Technical University ‘Kharkiv Polytechnic Institute’. Series ‘New Solutions in Modern Technologies’, No. 25 (1197): 125 (2016) (in Ukrainian).
  21. V. B. Molodkin, M. V. Koval’chuk, I. M. Karnaukhov, V. F. Machulin, V. E. Storizhko, E. Kh. Mukhamedzhanov, A. I. Nizkova, S. V. Lizunova, E. N. Kislovskii, S. I. Olikhovskii, B. V. Sheludchenko, S. V. Dmitriev, E. S. Skakunova, V. V. Molodkin, V. V. Lizunov, V. A. Bushuev, R. N. Kyutt, B. S. Karamurzov, A. A. Dyshekov, T. I. Oranova, and Yu. P. Khapachev, Osnovy Dinamicheskoy Vysokorazreshayushchey Difraktometrii Funktsional’nykh Materialov [Basis of Dynamical High-Resolution Diffraction of Functional Materials] (Nalchik: Kabardino-Balkarsky University: 2013) (in Russian).
  22. V. B. Molodkin, M. V. Koval’chuk, I. M. Karnaukhov, V. E. Storizhko, S. V. Lizunova, S. V. Dmitriev, A. I. Nizkova, E. N. Kislovskii, V. V. Molodkin, E. V. Pervak, A. A. Katasonov, V. V. Lizunov, E. S. Skakunova, B. S. Karamurzov, A. A. Dyshekov, A. N. Bagov, T. I. Oranova, and Yu. P. Khapachev, Osnovy Integral’noy Mnogoparametricheskoy Diffuznodinamicheskoy Difraktometrii [Basis of Integral Multiparameter Diffusion-Dynamical Diffractometry] (Nalchik: Kabardino-Balkarsky University: 2013) (in Russian).
  23. V. V. Lizunov, V. B. Molodkin, S. V. Lizunova, M. G. Tolmachyov, O. S. Skakunova, S. V. Dmitriev, B. V. Sheludchenko, S. M. Brovchuk, L. M. Skapa, R. V. Lekhnyak, and K. V. Fuzik, Metallofizika i Noveishie Tekhnologii, 36, No. 7: 857 (2014) (in Russian). Crossref
  24. V. V. Lizunov, V. B. Molodkin, S. V. Lizunova, N. G. Tolmachev, O. S. Skakunova, S. V. Dmitriev, B. V. Sheludchenko, S. M. Brovchuk, L. M. Skapa, R. V. Lekhnyak, V. V. Molodkin, K. V. Fuzik, Uspehi Fiziki Metallov, 15, № 2: 55 (2014) (in Russian). Crossref
  25. S. G. Jabarov, D. P. Kozlenko, S. E. Kichanov, A. V. Belushkin, B. N. Savenko, R. Z. Mextieva, and C. Lathe, Physics of Solid State, 53, No. 11: 2300 (2011). Crossref
  26. R. Z. Mekhdieva, E. V. Lukin, S. E. Kichanov, D. P. Kozlenko, S. H. Jabarov, T. N. Dang, A. I. Mammadov, and B. N. Savenko, Physics of Solid State, 56, No. 4: 765 (2014). Crossref
  27. H. S. Potdar, S. B. Deshpande, and S. K. Date, Mater. Chem. Phys., 58: 121 (1999). Crossref
  28. H. Xu and L. Gao, J. Am. Ceram. Soc., 86: 203 (2003). Crossref
  29. L. Wang, L. Liu, D. Xue, H. Kang, and C. Liu, J. Alloys & Compounds, 440: 78 (2007). Crossref
  30. M. K. Lee, T. K. Nath, C. B. Eoma, M. C. Smoak, and F. Tsui, App. Phys. Lett., 77, No. 22: 3547 (2000). Crossref
  31. Z. Lazerevic, N. Romcevic, M. Vijatovic, N. Paunovic, M. Romcevic, B. Stojanovic, and Z. Dohcevic-Mitrovic, Acta Phys. Pol. A, 115, No. 4: 808 (2009). Crossref
  32. K. Tkacz-Smiecz, A. Kolezynski, and W. S. Ptak, Solid State Communications, 127: 557 (2003). Crossref
Cited By (1)
  1. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).