Work Hardening of Steel with a Bainite Structure

V. E. Gromov$^{1}$, E. N. Nikitina$^{1}$, Yu. F. Ivanov$^{2,3}$, K. V. Aksyonova$^{1}$, E. V. Kornet$^{1}$

$^1$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^2$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia

Received: 17.04.2015. Download: PDF

The analysis of constructional steel 30Cr2Ni2MoV (in mass %: C—0.3; Cr $\leq$ 2; Ni $\leq$ 2; Mo $\leq$ 1; V $\leq$ 1, Fe—the rest) under compression up to fracture after air cooling from the austenisation temperature of 960°C is carried out. Two stages of deformation strengthening are revealed: 1st stage with the parabolic $\sigma(\varepsilon)$ dependence and decreasing coefficient of deformation strengthening; 2nd stage with the weakly changing negative strengthening coefficient. Using the methods of transmission electron diffraction microscopy, a quantitative evolution analysis of the defect and carbide subsystems of this medium-carbon steel with a bainite structure under compression strain up to 36% is performed. A quantitative analysis of the carbon redistribution is also performed, and the dependences of the concentration of carbon atoms arranged in a crystal lattice of the $\alpha$- and $\gamma$-irons, on the structural defects, in cementite particles lying in the bulk of bainite plates and in-phase boundaries, on the deformation degree. The dependence of the longitudinal and cross-sectional dimensions of cementite particles in bainite crystals, volume fractions of cementite particles and retained austenite, the scalar density of dislocations, the material volume with microtwins, fragment size, the number of stress concentrators, and the width of the extinction contours on the deformation degree is determined. As shown, the scalar dislocation density, the material volume with deformation twins, the number of stress concentrators, the curvature–torsion amplitude of a crystal lattice, disorientation degree of fragments are increasing with growing deformation degree, and average longitudinal fragment sizes are decreasing. The long-range stress fields are estimated. The possible causes of the staging of changes of the carbide-phase and dislocation-substructure parameters with deformation are discussed. As shown, the carbide transformations in the bainite structure are occurring in course of two competition processes: dissolution of cementite particles being formed in ferrite plates during bainite transformation and their precipitation at the dislocation-substructure elements during ‘deformation ageing’. Simultaneously, the additional transformation of retained austenite initiated by steel deformation is observed. As shown, the transition from the first stage of steel deformation to the second one is prepared by the following modifications of the structural-phase state of the material: firstly, by the completion of the process of intensive dislocation accumulations; secondly, by the initiation of the mechanism of the deformation microtwins; thirdly, by the completion of the fragmentation process of bainite plates; fourthly, by the maximum density of flexural extinction circuits; fifthly, by the substantial increase in solid-solution steel hardening. As a whole, all these processes lead to the formation of the areas in the material with a critical substructure capable of the microcrack formations with the subsequent destruction of the sample. Strengthening mechanisms with the boundaries of plates and fragments, the scalar dislocation density, long-range stress fields, cementite particles, interstitial atoms are estimated. As shown, the largest contribution to the work hardening of the investigated steel is given by the substructural hardening (hardening due to the long-range internal-stress fields and fragmentation patterns) and solid-solution hardening, due to the introduction of carbon atoms into the crystal lattice of the ferrite. As suggested, the cause of softening of steel with a bainite structure at high (over 15%) degrees of deformation is the activation of the process of deformation fine-scale twinning.

Keywords: steel, bainite, deformation, cementite, dislocation substructure, hardening mechanisms.

PACS: 61.72.Lk, 62.20.M-, 68.37.Lp, 81.40.Ef, 81.40.Np, 81.65.Lp, 83.50.Uv

DOI: https://doi.org/10.15407/ufm.16.04.299

Citation: V. E. Gromov, E. N. Nikitina, Yu. F. Ivanov, K. V. Aksyonova, and E. V. Kornet, Work Hardening of Steel with a Bainite Structure, Usp. Fiz. Met., 16, No. 4: 299—328 (2015) (in Russian), doi: 10.15407/ufm.16.04.299


References (60)  
  1. Y. Ohmori, Y.-C. Jung, K. Nakai, and H. Shiori, Acta Mater., 49, No. 6: 3149 (2001). Crossref
  2. D. Quidort and Y. J. M. Brechet, Acta Mater., 49, No. 20: 4161 (2001). Crossref
  3. T. Sourmail and V. Smanio, Acta Mater., 61, No. 7: 2639 (2013). Crossref
  4. A. J. Clarke, J. G. Speer, M. K. Miller, R. E. Hackenberg, D. V. Edmonds, D. K. Matlock, F. C. Rizzo, K. D. Clarke, and E. De Moor, Acta Mater., 56, No. 1: 16 (2008). Crossref
  5. A. Borgenstam, M. Hillert, and J. Agren, Acta Mater., 57, No. 11: 3242 (2009). Crossref
  6. E. Gudremon, Spetsialnye Stali [Special Steels] (Moscow: Metallurgiya: 1966) (Russian translation).
  7. Yu. I. Matrosov, D. A. Litvinenko, and S. A. Golovanenko, Stal dlya Magistralnykh Gazoprovodov [Steel for the Main Gas Pipelines] (Moscow: Metallurgiya: 1989) (in Russian).
  8. V. V. Pavlov, L. A. Godik, L. V. Korneva, N. A. Kozyrev, and E. P. Kuznetsov, Metallurg, No. 4: 51 (2007) (in Russian).
  9. I. I. Novikov, Teoriya Termicheskoy Obrabotki Metallov [Theory of Heat Treatment of Metals] (Moscow: Metallurgiya: 1978) (in Russian).
  10. F. B. Pickering, Fizicheskoe Metallovedenie i Razrabotka Staley [Physical Metallurgy and the Design of Steels] (Moscow: Metallurgiya: 1982) (Russian translation).
  11. G. V. Kurdyumov, L. M. Utevskiy, and R. I. Entin, Prevrashcheniya v Zheleze i Stali [Transformations in the Iron and Steel] (Moscow: Nauka: 1977) (in Russian).
  12. H. K. D. H. Bhadeshia, Bainite in Steels (2nd ed.) (London: The Institute of Materials: 2001).
  13. S.-J. Lee, J.-S. Park, and Y.-K. Lee, Scr. Mater., 59, No. 1: 87 (2008). Crossref
  14. H. I. Aaronson, W. T. Reynolds, G. J. Shiflet, and G. Spanos, Metal. Trans. A, 21, No. 6: 1343 (1990). Crossref
  15. Ch. Fu-chen and Ch. Lu-yui, Voprosy Materialovedeniya, 53, No. 1: 52 (2008) (in Russian).
  16. H.-S. Fang, J.-B. Yang, Z.-G. Yang, and B.-Z. Bai, Scr. Mater., 47, No. 3: 157 (2012). Crossref
  17. G. Speich and R. R. Swann, J. Iron Steel Inst., 203, No. 4: 480 (1965).
  18. M. V. Belous, V. T. Cherepin, and M. A. Vasiliev, Prevrashcheniya pri Otpuske Stali [Transformations at Tempering of Steel] (Moscow: Metallurgiya: 1973) (in Russian).
  19. M. V. Belous, V. B. Novozhilov, L. S. Shatalova, and Yu. P. Sheyko, Fiz. Met. Metallovedenie, 79, No. 4: 128 (1995) (in Russian).
  20. V. I. Izotov and A. G. Kozlova, Fiz. Met. Metallovedenie, 80, No. 1: 97 (1995) (in Russian).
  21. G. R. Speich, Trans. Met. Soc. AIME, 245, No. 10: 2553 (1969).
  22. D. Kalich and E. M. Roberts, Met. Trans., 2, No. 10: 2783 (1971). Crossref
  23. E. J. Fasiska and H. Wagenblat, Trans. Met. Soc. AIME, 239, No. 11: 1818 (1967).
  24. N. Ridley, H. Stuart, and L. Zwell, Trans. Met. Soc. AIME, 246, No. 8: 1834 (1969).
  25. S. I. Veselov and E. Z. Spektor, Fiz. Met. Metallovedenie, 34, No. 5: 895 (1972) (in Russian).
  26. Yu. M. Lakhtin, Metallovedenie i Termicheskaya Obrabotka Metallov [Metallurgy and Heat Treatment of Metals] (Moscow: Metallurgiya: 1977) (in Russian).
  27. M. V. Belous, Metallofizika, No. 32: 79 (1970) (in Russian).
  28. G. Thomas and M. Sarikaya, Proc. Int'l Conf. 'Solid–Solid Phase Transformations' (August 10–14, 1981, Pittsburgh, USA) (Warrendale: 1982), p. 999.
  29. M. Sarikaya, G. Thomas, and J. W. Steeds, Proc. Int'l Conf. 'Solid–Solid Phase Transformations' (August 10–14, 1981, Pittsburgh, USA) (Warrendale: 1982), p. 1421.
  30. Yu. F. Ivanov, N. A. Popova, S. A. Gladyshev, and Eh. V. Kozlov, Vzaimodeystvie Defektov Kristallicheskoy Reshyotki i Svoystva: Sb. Trudov [Interaction of Crystal-Lattice Defects and Properties] (Tula: TulPI: 1986), p. 100 (in Russian).
  31. Yu. F. Ivanov, E. V. Kornet, Eh. V. Kozlov, and V. E. Gromov, Zakalyonnaya Konstruktsionnaya Stal: Struktura i Mekhanizmy Uprochneniya [Hardened Structural Steel: the Structure and Mechanisms of Hardening] (Novokuznetsk: Izd-vo SibGIU: 2010) (in Russian).
  32. L. M. Utevskiy, Difraktsionnaya Elektronnaya Mikroskopiya v Metallovedenii [The Diffraction Electron Microscopy in Metallurgy] (Moscow: Metallurgiya: 1973) (in Russian).
  33. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Elektronnaya Mikroskopiya Tonkikh Kristallov [Electron Microscopy of Thin Crystals] (Moscow: Mir: 1968) (Russian translation).
  34. M. V. Pridantsev, L. N. Davydova, and A. M. Tamarina, Konstruktsionnyye Stali: Spravochnik [Structural Steels: Handbook] (Moscow: Metallurgiya: 1980) (in Russian).
  35. N. A. Koneva and Eh. V. Kozlov, Izv. VUZov. Fizika, No. 8: 3 (1982) (in Russian).
  36. N. A. Koneva, Eh. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, Sb. Trudov Mezhdunarodnoy Konferentsii 'Novyye Metody v Fizike i Mekhanike Deformiruemogo Tverdogo Tela' [Proc. of the International Conference 'New Methods in Physics and Mechanics of Deformable Solid'] (Tomsk: TGU: 1990), p. 83 (in Russian).
  37. I. R. Naulor, Met. Trans., 10, No. 7: 873 (1979).
  38. B. Z. Belenkiy, B. M. Farber, and M. I. Goldshtein, Fiz. Met. Metallovedenie, 39, No. 3: 403 (1975) (in Russian).
  39. V. I. Trefilov, V. I. Moiseev, and E. P. Pechkovskiy, Deformatsionnoe Uprochnenie i Razrushenie Polikristallicheskikh Metallov [Work Hardening and Failure of Polycrystalline Metals] (Kiev: Naukova Dumka: 1987) (in Russian).
  40. D. McLin, Mekhanicheskie Svoystva Metallov [Mechanical Properties of Metals] (Moscow: Metallurgiya: 1965) (Russian translation).
  41. M. I. Goldshtein and V. M. Farber, Dispersionnoe Uprochnenie Stali [Dispersion Strengthening of Steel] (Moscow: Metallurgiya: 1979) (in Russian).
  42. M. A. Shtremel, Prochnost Splavov. Ch. II: Deformatsiya [The Strength of Alloys. Pt. II: Deformation] (Moscow: MISiS: 1997) (in Russian).
  43. A. A. Predvoditelev, Problemy Sovremennoy Kristallografii [Problems of Contemporary Crystallography] (Moscow: Nauka: 1975), p. 262 (in Russian).
  44. I. D. Embury, Strengthening Methods in Crystals (Eds. A. Kelly and R. B. Nicholson) (Barking, UK: Applied Science Publishers Ltd.: 1971), p. 331.
  45. Staticheskaya Prochnost i Mekhanika Razrusheniya Staley: Sb. Nauchnykh Trudov [Werkstoffkunder Eisen und Stahl—Static Strength and Mechanics of Steel Failure: Collected Scientific Transactions] (Eds. V. Dal and V. Anton) (Moscow: Metallurgiya: 1986) (Russian translation).
  46. E. O. Hall, Proc. Phys. Soc., No. 64: 747 (1951). Crossref
  47. K. Luke and G. Gottstein, Staticheskaya Prochnost i Mekhanika Razrusheniya Staley: Sb. Nauchnykh Trudov [Werkstoffkunder Eisen und Stahl—Static Strength and Mechanics of Steel Failure: Collected Scientific Transactions] (Eds. V. Dal and V. Anton) (Moscow: Metallurgiya: 1986), p. 14 (Russian translation).
  48. V. Dal, Staticheskaya Prochnost i Mekhanika Razrusheniya Staley: Sb. Nauchnykh Trudov [Werkstoffkunder Eisen und Stahl—Static Strength and Mechanics of Steel Failure: Collected Scientific Transactions] (Eds. V. Dal and V. Anton) (Moscow: Metallurgiya: 1986), p. 133 (Russian translation).
  49. V. E. Gromov, Eh. V. Kozlov, V. I. Bazaykin, V. Ya. Cellermaer, and Yu. F. Ivanov, Fizika i Mekhanika Volocheniya i Ob'yomnoy Shtampovki [Physics and Mechanics of Drawing and Bulk Forging] (Moscow: Nedra: 1997) (in Russian).
  50. B. N. Strunin, Fiz. Tverdogo Tela, 9, No. 3: 805 (1967) (in Russian).
  51. N. F. Mott and F. R. N. Nabarro, Proc. Phys. Soc., 52, No. 1: 86 (1940). Crossref
  52. M. F. Ashby, Physics of Strength and Plasticity (Cambridge: MIT Press: 1969), p. 113.
  53. E. Tekin and P. M. Kelly, Precipitation from Iron-Base Alloys (New York: Gordon and Breach: 1965).
  54. S. J. Barnard, G. D. W. Smith, M. Saricaya, and G. Thomas, Scripta Met., 15, No. 4: 387 (1981). Crossref
  55. R. L. Fleischer, Electron Microscopy and Strength of Crystals (New York: Wiley Interscience: 1963), p. 973.
  56. O. Vohringer und E. Macherauch, Härterei-Techn. Mitt., 32, H. 4: 153 (1977).
  57. L. A. Norstrom, Scandinavian J. of Met., 5, No. 4: 159 (1976).
  58. T. Prnka, Metallovedenie i Term. Obr. Stali, No. 7: 3 (1979) (in Russian).
  59. N. A. Koneva, S. F. Kiseleva, N. A. Popova, and Eh. V. Kozlov, Deformatsiya i Razrushenie Materialov [Deformation and Failure of Materials], No. 9: 38 (2013) (in Russian).
  60. S. F. Kiseleva, N. A. Popova, N. A. Koneva, and Eh. V. Kozlov, Izv. RAN. Ser. Fizicheskaya, 76, No. 13: 70 (2012) (in Russian).
Cited By (2)
  1. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).
  2. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov and S. V. Konovalov, Usp. Fiz. Met. 18, 111 (2017).