Regularities of Formation of Structural–Phase States on a Surface of Metals and Alloys at an Electroexplosive Alloying

D. A. Romanov$^{1}$, V. E. Gromov$^{1}$, Е. А. Budovskikh$^{1}$, Yu. F. Ivanov$^{2,3}$

$^1$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^2$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia

Received: 20.05.2015. Download: PDF

For the first time, the quantitative and qualitative studies of the structural–phase states of the surface layers of metals and alloys subjected to electroexplosive alloying with the use of thermoreacting components are carried out. Using layer-by-layer electron-microscopy studies, a gradient character of the structural–phase states is revealed; it is characterized by a natural change of the phase composition and parameters of the defect substructure as the distance from the treatment surface rises. The main factors and mechanisms, which determine the acceleration of physicochemical synthesis processes of new phases at electroexplosive alloying, are revealed and analysed. As established, the electroexplosive alloying is caused by complex thermal-force effect on the irradiated surface of multiphase plasma jet formed from the products of electric explosion of conductors and powder samples and is accompanied by complex patterns of change in the structural–phase states and defect substructure at different (from macro- to nano-) scale levels. It is accompanied during a short treatment time equal to 100 $\mu$s as follows: for the case of aluminium alloying with nickel, with the formation of alloying zone strengthened with intermetallics of Ni–Al systems and characterized by great depth; for the case of titanium alloying of the surface of a solid WK10KS alloy, with the decomposition in the alloying zone of WC carbide particles and the formation of TiC, (Ti, W)C and W$_{2}$C carbide particles; for the case of carboborating of the titanium surface, with the use of powder sample of amorphous-boron forming the layer of composite coating with the thickness of about 10 microns, which has the high microhardness (up to 3600 $HV$). Multiple increases of the microhardness, wear resistance, and other functional properties of the surface due to the electroexplosive alloying are ascertained. The regularities and formation mechanisms in the structural–phase states of the surface layers at an electroexplosive alloying with the use of thermoreacting components are revealed. The obtained research results can be used for the development of the theory of structural–phase transformations in metals and alloys and used in cost-beneficial technological processes for hardening the device surfaces in metallurgical, machine-building, aviation, and other industries. The acceleration of the synthesis of chemical compounds on the surface of metals and alloys at electroexplosive alloying is established experimentally. It consists in the formation of new phases and compounds with a rate exceeding the rate of their formation under the normal interaction conditions, if the pulsed plasma jets exposing the surface are formed from the products of electrical explosion of conductors, the exposure time is equal to 100 $\mu$s, the power density is of the order of several GW/m$^{2}$, and the pressure in the shock-compressed layer near the irradiated surface is of about 1–10 MPa.

Keywords: electroexplosive alloying, structure, phase composition, nickel, aluminium, solid alloy, titanium.

PACS: 52.80.Qj, 62.20.Qp, 68.37.Hk, 81.15.Pq, 81.40.Pq, 81.65.Lp, 82.33.Vx

DOI: https://doi.org/10.15407/ufm.16.02.119

Citation: D. A. Romanov, V. E. Gromov, Е. А. Budovskikh, and Yu. F. Ivanov, Regularities of Formation of Structural–Phase States on a Surface of Metals and Alloys at an Electroexplosive Alloying, Usp. Fiz. Met., 16, No. 2: 119—157 (2015) (in Russian), doi: 10.15407/ufm.16.02.119


References (31)  
  1. A. Ya. Bagautdinov, E. A. Budovskikh, Yu. F. Ivanov, and V. E. Gromov, Fizicheskie Osnovy Elektrovzryvnogo Legirovaniya Metallov i Splavov [Physical Fundamentals of Electroexplosive Alloying of Metals and Alloys] (Novokuznetsk: SibGIU: 2007) (in Russian).
  2. D. A. Romanov, E. A. Budovskikh, V. E. Gromov, and Yu. F. Ivanov, Elektrovzryvnoe Napylenie Iznoso- i Elektroerozionnostoykih Pokrytiy [Electroexplosive Sputtering of Wear- and Electroresistant Coatings] (Novokuznetsk: Poligrafist: 2014) (in Russian).
  3. D. A. Romanov, E. A. Budovskikh, and V. E. Gromov, Elektrovzryvnoe Napylenie Elektroerozionnostoykih Pokrytiy: Formirovanie Struktury, Fazovogo Sostava i Svoystv Elektroerozionnostoykih Pokrytiy Metodom Elektrovzryvnogo Napyleniya [Electroexplosive Sputtering of Electroresistant Coatings: Formation of Structure, Phase Composition, and Properties of Electroresistant Coatings by Electroexplosive Sputtering Method] (Saarbrucken: LAP LAMBERT Academic Publishing GmbH & Co. KG: 2012) (in Russian).
  4. N. P. Lyakishev, S. V. Pavlovich, O. A. Kolpakov, O. A. Bannykh, N. A. Vatolin, M. I. Gasik, V. I. Dobatkin, A. V. Elyutin, S. P. Efimenko, V. I. Kashin, S. K. Kazhakhmetov, B. G. Korshunov, Yu. A. Osip'yan, N. N. Rakova, S. I. Tishaev, L. Z. Khodak, and V. N. Chernyshov, Entsiklopedicheskiy Slovar' po Metallurgii [Metallurgy Encyclopaedic Dictionary] (Moscow: Interment Inzhiniring: 2000), vol. 1 (in Russian).
  5. V. E. Gromov, E. V. Kapralov, and S. V. Raykov, Yu. F. Ivanov, and E. A. Budovskikh, Uspehi Fiziki Metallov, 15, No. 4: 213 (2014) (in Russian). Crossref
  6. V. E. Gromov, Yu. F. Ivanov, V. A. Grishunin, S. V. Raykov, and S. V. Konovalov, Uspehi Fiziki Metallov, 14, No. 1: 67 (2013) (in Russian). Crossref
  7. V. E. Gromov, K. V. Volkov, Yu. F. Ivanov, K. V. Morozov, K. V. Alsaraeva, and S. V. Konovalov, Uspehi Fiziki Metallov, 15, No.1: 1 (2014) (in Russian). Crossref
  8. B. A. Artamonov, Yu. S. Volkov, V. I. Drozhalova, F. V. Sedykin, V. P. Smolentsev, and V. M. Yampol'skiy, Elektrofizicheskie i Elektrokhimicheskie Metody Obrabotki Materialov: Uchebnoe Posobie. Obrabotka Materialov s Ispol'zovaniem Vysokokontsentrirovannykh Istochnikov Energii [Electrophysical and Electrochemical Methods for Material Treatments. Tutorial. Material Treatments Using the High-Energy Sources] (Moscow: Vysshaya Shkola: 1983), vol. 2 (in Russian).
  9. A. V. Bolotov and G. A. Shepel', Elektrotekhnologicheskie Ustanovki: Uchebnoe Posobie dlya Vuzov [Electrotechnological Apparatuses: Tutorials for High Schools] (Moscow: Vysshaya Shkola: 1988) (in Russian).
  10. A. Khasui and O. Morigaki, Naplavka i Napylenie [Surfacing and Sputtering] (Moscow: Mashinostroenie: 1985) (Russian translation).
  11. G. V. Bobrov and A. A. Il'in, Nanesenie Neorganicheskikh Pokrytiy. Teoriya. Tekhnologiya. Oborudovanie: Uchebnoe Posobie dlya Vuzov [Deposition of Inorganic Coatings. Theory. Technology. Equipment. Tutorial for High Schools] (Moscow: Intermet Inzhiniring: 2004) (in Russian).
  12. V. F. Goryushkin, A. Ya. Bagautdinov, E. V. Martusevich, and V. E. Gromov, Zagotovitel'nye Proizvodstva v Mashinostroenii, No. 9: 44 (2005) (in Russian).
  13. E. A. Budovskikh, V. F. Goryushkin, E. V. Martusevich, V. E. Gromov, and A. Ya. Bagautdinov, Fundamental'nye Problemy Sovremennogo Materialovedeniya [Basic Problems of Materials Science], No. 1: 95 (2005) (in Russian).
  14. E. A. Budovskikh, L. V. Manzhos, E. V. Martusevich, and I. S. Astakhova, Izvestiya Vuzov. Chernaya Metallurgiya, No. 6: 38 (2003) (in Russian).
  15. S. V. Raykov, E. A. Budovskikh, V. E. Gromov, Yu. F. Ivanov, and E. S. Vashchuk, Fizicheskaya Priroda Uprochneniya Poverkhnostnykh Sloyov Titanovykh Splavov pri Elektrovzryvnom Legirovanii i Elektronno-Puchkovoy Obrabotke [Physical Nature of the Strengthening of Surface Layers of Titanium Alloys at Electroexplosive Alloying and Electron-Beam Treatment] (Novokuznetsk: Inter-Kuzbass: 2014) (in Russian).
  16. Struktura, Fazovyy Sostav i Svoystva Poverkhnostnykh Sloyov Titana Posle Elektrovzryvnogo Nauglerozhivaniya i Elektronno-Puchkovoy Obrabotki [Structure, Phase Composition, and Properties of Titanium Surface Layers after Electroexplosive Carburizing and Electron-Beam Treatment] (Ed. V. E. Gromov) (Novokuznetsk: Inter-Kuzbass: 2012) (in Russian).
  17. Formirovanie Strukturno-Fazovykh Sostoyaniy Metallov i Splavov pri Elektrovzryvnom Legirovanii i Elektronno-Puchkovoy Obrabotke [Formation of Structural-Phase States of Metals and Alloys at the Electroexplosive Doping and Electron-Beam Treatment] (Ed. V. E. Gromov) (Novokuznetsk: Inter-Kuzbass: 2011) (in Russian).
  18. V. V. Uglov, N. N. Cherenda, V. M. Anishchik, V. M. Astashinskiy, and N. T. Kvasov, Modifikatsiya Materialov Kompressionnymi Plazmennymi Potokami [Modification of Materials by the Compression Plasma Flows] (Minsk: BGU: 2013) (in Russian).
  19. Yu. N. Tyurin and M. L. Zhadkevich, Plazmennye Uprochnyayushchie Tekhnologii [Plasma Strengthening Technology] (Kiev: Naukova Dumka: 2008) (in Russian).
  20. L. F. Mondolfo, Struktura i Svoystva Alyuminievykh Splavov [Aluminium Alloys: Structure and Properties] (Moscow: Metallurgiya: 1979) (Russian translation).
  21. A. N. Ivanov, V. S. Khmelevskaya, I. A. Antoshina, and A. B. Korshunov, Perspektivnye Materialy, No. 1: 89 (2003) (in Russian).
  22. V. A. Tarbokov, G. E. Remnev, and P. V. Kuznetsov, Fizika i Khimiya Obrabotki Materialov, No. 3: 11 (2004) (in Russian).
  23. Yu. N. Tyurin, S. N. Kul'kov, O. V. Kolisnichenko, and I. M. Duda, Fizicheskaya Inzheneriya Poverkhnosti, 7, No. 3: 262 (2009) (in Russian).
  24. T. N. Oskolkova and E. A. Budovskikh, Poverkhnostnoe Uprochnenie WC–Co Tvyordogo Splava Elektrovzryvnym Legirovaniem [Surface Strengthening of Solid WC–Co Alloy via Electroexplosive Alloying]: Patent 2398046 RU. MPK S23S 14/32, S23S 14/48 (Otkrytiya i Izobreteniya: No. 24) (2010) (in Russian).
  25. T. N. Oskolkova and E. A. Budovskikh, Zagotovitel'mnye Proizvodstva v Mashinostroenii, No. 8: 33 (2010) (in Russian).
  26. T. N. Oskolkova and E. A. Budovskikh, Sposob Poverkhnostnoy Obrabotki Vol’framokobal’tovogo Tvyordosplavnogo Instrumenta [A Method of Surface Treatment of Solid Tungsten–Cobalt Alloy Tools]: Patent 2405061 RU. MPK S23S 14/32, S23S 14/06 (Otkrytiya i Izobreteniya: No. 33) (2010) (in Russian).
  27. V. G. Khizhnyak, V. Yu. Dolgikh, and V. I. Korol', Nauchnye Vesti NTU Ukrainy «Kyyivskyy Politekhnichnyy Instytut», No. 1: 74 (2002) (in Russian).
  28. N. N. Evstratova, V. T. Kompaneets, and V. A. Sukharnikova, Materialovedenie [Materials Science] (Rostov-on-Don: Feniks: 2006) (in Russian).
  29. B. N. Arzamasov, V. A. Brostrem, N. A. Bushe, Yu. A. Bykov, A. G. Vasil'eva, G. P. Gardymov, I. S. Gershman, E. Ch. Gini, M. E. Drits, A. A. Zyabrev, I. V. Kirillov, S. I. Kishkina, E. A. Kurochkin, V. I. Kucheryavyy, V. I. Makarova, T. A. Paiayoti, Zh. P. Pastukhova, M. D. Perkas, A. G. Rakhshtadt, A. P. Semenov, V. I. Silaeva, V. N. Simonov, L. M. Sokolenko, T. V. Solov'eva, V. I. Solonin, G. B. Stroganov, V. I. Tret'yakov, E. A. Ul'yanin, I. N. Fridlyaider, O. M. Khovova, and K. P. Yatsenko, Konstruktsionnye Materialy: Spravochnik [Construction Materials: a Handbook] (Ed. B. N. Arzamasov) (Moscow: Mashinostroenie: 1990) (in Russian).
  30. I. N. Chaporova and K. S. Chernyavskiy, Struktura Spechyonnykh Tvyordykh Splavov [Structure of the Sintered Solid Alloys] (Moscow: Metallurgiya: 1975) (in Russian).
  31. M. G. Loshak, Prochnost' i Dolgovechnost' Tvyordykh Splavov [Strength and Durability of Solid Alloys] (Kiev: Naukova Dumka: 1984) (in Russian).
Cited By (2)
  1. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov and S. V. Konovalov, Usp. Fiz. Met. 18, 111 (2017).
  2. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).