Macroscopic Physics of Plastic Deformation of Metals

L. B. Zuev$^{1,2}$

$^1$Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademicheskiy Ave., Tomsk, 634021, Russia
$^2$Tomsk State University, 36 Lenina Ave., Tomsk, 634050, Russia

Received: 26.12.2014. Download: PDF

The localized plastic deformation and the law-like regularities underlying its development in solids are considered. The characteristic features of localized plasticity are analysed for a wide series of materials, i.e. metals, non-metals, and rocks. Thus, a correlation is established between the products of scales and process rates for the elastic and plastic deformations. It is favourable ground for hypothesizing causal links between the elastic and plastic deformations by introducing an elastic–plastic invariant, which is the master equation of the autowave plasticity model being developed. It is proposed that localized plasticity phenomena have to be described within the scope of the autowave and quasi-particle approaches.

Keywords: deformation, localization, hardening, autowaves, dislocations.

PACS: 62.20.F-, 62.50.-p, 81.40.Jj, 81.40.Lm, 83.10.-y, 83.50.-v, 83.60.-a

DOI: https://doi.org/10.15407/ufm.16.01.035

Citation: L. B. Zuev, Macroscopic Physics of Plastic Deformation of Metals, Usp. Fiz. Met., 16, No. 1: 35—60 (2015) (in Russian), doi: 10.15407/ufm.16.01.035


References (59)  
  1. L. B. Zuev, Ann. Phys., 10, Nos. 11–12: 965 (2001). Crossref
  2. L. B. Zuev, Ann. Phys., 16, No. 4: 286 (2007). Crossref
  3. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Phys. Wave Phenom., 17, No. 1: 66 (2009). Crossref
  4. L. B. Zuev, Phys. Wave Phenom., 20, No. 3: 166 (2012). Crossref
  5. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Fizika Makrolokaliizatsii Plasticheskogo Techeniya [Plastic Flow Macrolocalization Physics] (Novosibirsk: Nauka: 2008) (in Russian).
  6. V. I. Danilov and L. B. Zuev, Uspehi Fiziki Met., 9, No. 4: 271 (2008) (in Russian).
  7. A. Seeger and W. Frank, Solid State Phenom., 3–4: 125 (1988). Crossref
  8. L. B. Zuev, Metallofizika i Noveishie Tekhnologii, 16, No. 10: 31 (1994) (in Russian).
  9. L. B. Zuev, V. I. Danilov, and V. V. Gorbatenko, Zh. Tekhn. Fiz., 65, No. 5: 91 (1995) (in Russian).
  10. A. Yu. Loskutov and A. S. Mikhaylov, Vvedenie v Sinergetiku [Introduction to Synergetics] (Moscow: Nauka: 1990) (in Russian).
  11. P. Hähner, Appl. Phys. A, 58, No. 4: 41 (1994). Crossref
  12. L. B. Zuev, Pis'ma v Zh. Tekhn. Fiz., 31, No. 3: 1 (2005) (in Russian).
  13. M. Zaiser and E. C. Aifantis, Int. J. Plasticity, 22, No. 12: 1432 (2006). Crossref
  14. E. C. Aifantis, Acta Mechan., 225, No. 4: 999 (2014). Crossref
  15. A. Acharia, A. Beaudoin, and R. Miller, Mathemat. Mechan. Solids., 13, No. 4: 292 (2008). Crossref
  16. C. Fressengeas, A. Beaudoin, D. Entemeyer, T. Lebedkina, M. Lebyodkin, and V. Taupin, Phys. Rev. B, 79: 014108 (2009). Crossref
  17. M. A. Lebyodkin, N. P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V. S. Gornakov, T. A. Lebedkina, and I. V. Shashkov, Acta Mater., 60, No. 23: 3729 (2012). Crossref
  18. A. M. Kosevich and A. S. Kovalev, Vvedenie v Nelineynuyu Fizicheskuyu Mekhaniku [Introduction to Nonlinear Physical Mechanics] (Kiev: Naukova Dumka: 1989) (in Russian).
  19. A. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford: University Press: 2003).
  20. G. Murdie, Mathematical Modelling (London: Butterworth: 1976), p. 109.
  21. R. E. Newnham, Properties of Materials (Oxford: University Press: 2005).
  22. E. Skudrzik, The Foundations of Acoustic (New York: Springer-Verlag: 1971).
  23. A. L. Roytburd, Fizika Deformatsionnogo Uprochneniya Monokristallov [Physics of Strain Hardening of Single Crystals] (Kiev: Naukova Dumka: 1972), p. 5 (in Russian).
  24. M. Zaiser and A. Seeger, Dislocations in Solids (Eds. F. R. N. Nabarro and M. S. Duesbery) (North-Holland: Amsterdam: 2002), p. 1.
  25. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation (Berlin: Springer: 2010). Crossref
  26. A. N. Kolmogorov, I. G. Petrovskiy, and N. S. Piskunov, Bull. MGU. Ser. A. Matemat. i Mekhan., 1, No. 1: 6 (1937) (in Russian).
  27. V. A. Vasil'ev, Yu. M. Romanovskiy, and V. G. Yakhno, Avtovolnovye Protsessy [Autowave Processes] (Moscow: Nauka: 1987) (in Russian).
  28. E. F. Mishchenko, V. A. Sadovnichiy, A. Yu. Kolesov, and N. Kh. Rozov, Avtovolnovye Protsessy v Nelineynykh Sredakh s Difuziey [Autowave Processes in Nonlinear Medium with Diffusion] (Moscow: Fizmatlit: 2010) (in Russian).
  29. J. F. Bell, Eksperimental'nye Osnovy Mekhaniki Deformiruemykh Tverdykh Tel [Experimental Bases of Mechanics of Wrought Solids] (Moscow: Nauka: 1984), vol. 1 (in Russian).
  30. J. Pelleg, Mechanical Properties of Materials (Dordrecht: Springer: 2012). Crossref
  31. L. B. Zuev and V. I. Danilov, Phil. Mag. A, 79, No. 1: 43 (1999). Crossref
  32. L. D. Landau and E. M. Lifshits, Gidrodinamika [Hydrodynamics] (Moscow: Nauka: 1988) (in Russian).
  33. V. V. Pustovalov, Fizika Nizkikh Temperatur, 34, No. 9: 871 (2008) (in Russian).
  34. B. B. Kadomtsev, Dinamika i Informatsiya [Dynamics and Information] (Moscow: Redaktsiya UFN: 1997) (in Russian).
  35. L. B. Zuev and S. A. Barannikova, Int. J. Mech. Sci., 88, No. 12: 1 (2014). Crossref
  36. A. V. Andreykiv and N. V. Lysak, Metody Akusticheskoy Emissii v Issledovanii Protsesov Razrusheniya [Acoustic Emission Methods in the Study of Processes of Failure] (Kiev: Naukova Dumka: 1989) (in Russian).
  37. G. A. Malygin, Fizika Tverdogo Tela, 42, No. 1: 69 (2000) (in Russian).
  38. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Oxford: Elsevier: 2003).
  39. T. Tokuoka and Yu. Iwashizu, Int. J. Solids Struct., 4, No. 5: 383 (1968).
  40. L. B. Zuev, Metallofiz. Noveishie Tekhnol., 18, No. 5: 55 (1996) (in Russian).
  41. E. V. Shpol'skiy, Atomnaya Fizika [Atomic Physics] (Moscow: Nauka: 1984), vol. 1 (in Russian).
  42. D. J. Hudson, Statistics (Geneva: CERN: 1964).
  43. N. B. Brandt and V. A. Kul'batchinskiy, Kvazichastitsy v Fizike Kondensirovannogo Sostoyaniya [Quasi-Particles in Condensed Matter Physics] (Moscow: Fizmatlit: 2007) (in Russian).
  44. E. M. Morozov, L. S. Polak, and Ya. B. Fridman, Doklady Akademii Nauk S.S.S.R., 146, No. 3: 537 (1964) (in Russian).
  45. A. I. Olemskoi and A. A. Katsnel'son, Sinergetika Kondensirovannoy Sredy [Condensed Matter Synergetics] (Moscow: U.S.S.R.: 2003) (in Russian).
  46. J. P. Billingsley, Int. J. Solids Struct., 38, No. 23: 4221 (2001). Crossref
  47. L. B. Zuev, Int. J. Solids Struct., 42, No. 9: 943 (2005). Crossref
  48. L. B. Zuev and S. A. Barannikova, J. Mod. Phys., 1, No.1: 1 (2010). Crossref
  49. A. M. Kosevich, Fizicheskaya Mekhanika Real'nykh Kristallov [Physical Mechanics of Real Crystals] (Kyiv: Naukova Dumka: 1981) (in Russian).
  50. J. A. Reissland, The Physics of Phonons (London: J. Wiley and Sons: 1973).
  51. H. Umezava, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (Amsterdam: North-Holland Publ. Comp.: 1982).
  52. L. B. Zuev, V. I. Danilov, and B. S. Semukhin, Uspehi Fiziki Met., 3, No. 3: 237 (2002) (in Russian).
  53. Yu. B. Rumer and M. Sh. Ryvkin, Termodinamika, Statisticheskaya Fizika i Kinetika [Thermodynamics, Statistical Physics and Kinetics] (Moscow: Nauka: 1977) (in Russian).
  54. J. Friedel, Dislocations (Oxford: Pergamon: 1964).
  55. J. P. Hirth and J. Lothe, Theory of Dislocations (New York: McGraw-Hill Book Comp.: 1970)
  56. M. O. Katanaev, Uspekhi Fizicheskikh Nauk, 175, No. 7: 705 (2005) (in Russian). Crossref
  57. G. A. Malygin, Uspekhi Fizicheskikh Nauk, 169, No. 9: 979 (1999) (in Russian). Crossref
  58. L. B. Zuev, Izvestiya RAN. Ser. Fizicheskaya, 78, No. 10: 957 (2014) (in Russian).
  59. F. R. N. Nabarro, Strength of Metals and Alloys (Oxford: Pergamon Press: 1986).
Cited By (4)
  1. L. B. Zuev, V. V. Gorbatenko and V. I. Danilov, Russ. Metall. 2017, 231 (2017).
  2. A. L. Berezina, T. O. Monastyrska, О. A. Davydenko, O. A. Molebny et al., Metallofiz. Noveishie Tekhnol. 38, 1057 (2016).
  3. Alla Berezina, Tetiana Monastyrska, Olexandr Davydenko, Oleh Molebny et al., Nanoscale Res Lett 12, 220 (2017).
  4. L. B. Zuev, Metallofiz. Noveishie Tekhnol. 38, 1335 (2016).