Models and Characteristics of Discontinuous Transformation of Austenite in Iron–Carbon Alloys

S. V. Bobyr$^{1}$, V. I. Bol’shakov$^{2}$

$^1$Z.I. Nekrasov Iron and Steel Institute, NAS of Ukraine, 1 Akademika Starodubova Sq., 49050 Dnipropetrovsk, Ukraine
$^2$Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24a Chernyshevs’ky Str., 49600 Dnipro, Ukraine

Received: 04.08.2014. Download: PDF

The analysis of significant amount of works dealing with intermittent transformation of austenite allows determining the following basic characteristics of such transformation. The lamellar structure of perlite formed at intermittent transformation of austenite is thermodynamically unstable, since it has the very large extent of interphase boundaries. Perlite is formed as the separate colonies, i.e. areas, where $\alpha$-iron and cementite plates are approximately parallel and interplate (interlamellar) distance $(S_0)$ depends on cooling speed. Zener has suggested a relation for the interlamellar distance as a function of the steel overcooling value, $S_0 \varpropto \Delta T^{-1} $. The experimental results demonstrate, however, that the measured values of interlamellar distance of perlite are much larger than the values, which are proposed within the Zener model. The authors found the temperature dependence of interlamellar distance of perlite as a function of the overcooling value of alloy, $S_0 \varpropto (D/\Delta T)^{1/2}$, that is in agreement with experimental data. The growth rate of perlite $v$ is an important kinetic characteristic of austenite transformation process. The value of the growth rate has been obtained by Меhl as $v = KS_0^{-1}$. In the subsequent works, the scientists found various solutions of equation for carbon diffusion in austenite, which allow determining the value of the $K$-coefficient and to take into account effects of additional factors — structural strains (B. Ya. Lyubov), non-metallic inclusions (V. E. Ol’shanetskiy), herewith improving the accuracy of calculations. The authors develop the diffusion model of intermittent transformation of austenite, which allows explaining the formation of perlite and bainitе in iron–carbon alloys in the same temperature interval. The temperature dependence of the growth rate of $\alpha$-phase on the steel overcooling value is found theoretically as $v \varpropto \Delta T \exp({-Q/(2RT)})$.

Keywords: diffusion model, austenite transformation, interlamellar distance, pearlite growth rate, bainite.

PACS: 05.70.Ce, 05.70.Ln, 64.60.Ej, 64.70.kd, 64.75.Op, 66.30.J-, 81.10.Jt

DOI: https://doi.org/10.15407/ufm.15.03.145

Citation: S. V. Bobyr and V. I. Bol’shakov, Models and Characteristics of Discontinuous Transformation of Austenite in Iron–Carbon Alloys, Usp. Fiz. Met., 15, No. 3: 145—172 (2014) (in Russian), doi: 10.15407/ufm.15.03.145


References (41)  
  1. G. V. Kurdyumov, L. M. Utevskiy, and R. Y. Ehntin, Prevrashcheniya v Zheleze i Stali [Transformations in Iron and Steel] (Moscow: Nauka: 1977) (in Russian).
  2. B. Ya. Lyubov, Kineticheskaya Teoriya Fazovykh Prevrashcheniy [Kinetic Theory of Phase Transformations] (Moscow: Metallurgiya: 1969) (in Russian).
  3. Ya. S. Umanskiy and Yu. A. Skakov, Fizika Metallov. Atomnoe Stroenie Metallov i Splavov: Uchebnik dlya Vuzov [Physics of Metals. Atomic Structure of Metals and Alloys: Textbook for Universities] (Moscow: Atomizdat: 1978) (in Russian).
  4. A. L. Roytburd, Akademik Georgiy Vyacheslavovich Kurdyumov. Stranitsy zhyzni: Vospominaniya [Academician Georgiy Vyacheslavovich Kurdyumov. Pages of Life: Memoirs] (Moscow: Nauka: 2004) (in Russian).
  5. N. T. Belaiew, Mineralogical Magazine, No. 20: 173 (1924). Crossref
  6. C. Smith, Trans. ASM, 45: 533 (1953).
  7. K. P. Bunin, Yu. K. Bunina, and V. I. Mazur, MiTOM, No. 10: 6 (1971) (in Russian).
  8. R. F. Meyl and U. K. Hagel', Uspekhi Fiziki Metallov [Progress in Physics of Metals] (Moscow: GosNTI: 1960), vol. 3 (Russian translation).
  9. I. L. Mirkin, Trudy Moskovskogo Instituta Stali. Sb. KhVIII [Proceedings of the Moscow Institute of Steel. Collection KhVIII] (Moscow: MISiS: 1941).
  10. F. C. Hull and R. F. Mehl, Trans. Amer. Soc. Metals, 30: 381 (1942).
  11. R. F. Mehl, Hardenability of Alloy Steels (Cleveland: Amer. Soc. Metals: 1938).
  12. W. H. Brandt, J. Applied Physics, 16: 139 (1945). Crossref
  13. S. V. Bobyr, Stroitelstvo, Materialovedenie, Mashinostroenie: Sb. Nauchnykh Trudov [Construction, Material Science, Machine Building: Collected Scientific Papers] (Dnipropetrovsk: PGaSiA: 2004), Iss. 26, part 1, p. 363 (in Russian).
  14. Yu. I. Kovalchyk and M. I. Pashechko, Evtektyka IV: Zbirka Prats' Mizhnarodnoi Konferentsii [Eutectic IV: Proceeding of the International Conference] (24–26 June, 1997) (Dnipropetrovsk: DMetAU: 1997), p. 65 (in Ukrainian).
  15. S. V. Bobyr, Stroitelstvo, Materialovedenie, Mashinostroenie: Sb. Nauchnykh Trudov [Construction, Material Science, Machine Building: Collected Scientific Papers] (Dnipropetrovsk: PGaSiA: 2004), Iss. 22, part 2, p. 60 (in Russian).
  16. C. Zener, Trans. AIME, 167: 513 (1946).
  17. M. Hillert, Jerncontorets Ann., 141, No. 11: 755 (1957).
  18. J. W. Christian, Fizicheskoe Metallovedenie. T. 2. Fazovye Prevrashcheniya [Physical Metallurgy. Vol. 2. Phase Transformations] (Moscow: Mir: 1968) (Russian translation).
  19. L. Önsager, Phase Transformations in Solids: Conference (Cornell, Ithaca, NY: Wiley: 1951), p. 37.
  20. D. Turnball, Acta Met., 3: 43 (1955). Crossref
  21. V. Y. Bolshakov and S. V. Bobyr, MiTOM, No. 8: 11 (2004) (in Russian).
  22. R. I. Ehntin, Prevrashcheniya Austenita v Stali [Transformation of Austenite in Steel] (Moscow: GNTI: 1960) (in Russian).
  23. V. E. Olshanetskiy, Novi Materialy i Tekhnologii v Metalurgii ta Mashynobuduvanni, No. 1: 14 (2002) (in Ukrainian).
  24. V. E. Olshanetskiy, MiTOM, No. 3: 3 (2003) (in Russian).
  25. J. E. Burke and D. Turnball, Uspekhi Fiziki Metallov [Progress in Metal Physics] (Moscow: Metallurgizdat: 1956), vol. 1, p. 368 (Russian translation).
  26. W. S. Hagel, G. M. Pound, and R. F. Mehl, Acta Met., 4, No. 1: 37 (1956). Crossref
  27. I. V. Salli, Fizicheskie Osnovy Formirovaniya Struktury Splavov [Physical Foundations of Alloy Structure] (Moscow: Metallurgizdat: 1963) (in Russian).
  28. Yu. I. Kononenko and V. E. Olshanetskiy, Novi Materialy i Tekhnologii v Metalurgii ta Mashynobuduvanni, No. 1: 37 (2010) (in Ukrainian).
  29. R. F. Mehl, F. C. Hull, and R. A. Coltun, Trans. AIME, 150, No. 1: 185 (1942).
  30. A. Yu. Borisenko, M. F. Evsyukov, and G. V. Levchenko, Stroitel'stvo, Materialovedenie, Mashynostroenie: Sb. Nauchnykh Trudov [Construction, Materials Science, Machine Building: Collected Scientific Papers] (Dnipropetrovsk: PGASA: 2005), Iss. 32, part 1, p. 85 (in Russian).
  31. L. N. Aleksandrov and B. Ya. Lyubov, Doklady AN SSSR, 151, No. 3: 552 (1963) (in Russian).
  32. V. I. Bolshakov and S. V. Bobyr, Metaloznavstvo ta Termichna Obrobka Metaliv: Naukov. ta Inform. Byul. PDABA [Physical Metallurgy and Heat Treatment of Metals: Scientific and Information Bulletin PDABA] (Dnipropetrovsk: PDABA, 2005), No. 2, p. 27 (in Russian).
  33. S. V. Bobyr, Fundamentalnye i Prikladnye Problemy Chyornoy Metallurgii: Sb. Nauchnykh Trudov [Fundamental and Applied Problems of Ferrous Metallurgy: Collected Scientific Papers] (Dnipropetrovsk: Izd. IChM: 2006), Iss. 13, p. 241 (in Russian).
  34. L. E. Popova and A. A. Popov, Diagrammy Prevrashcheniya Austenita v Stalyakh i Beta-Rastvorakh v Splavakh Titana. Spravochnik Termista [Diagrams of Transformation of Austenite in Steels and Beta-Solutions in Titanium Alloys: Heat-Treater Handbook] (Moscow: Metallurgiya: 1991) (in Russian).
  35. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, K. Yu. Okishev, T. I. Tabatchikova, and Yu. V. Khlebnikova, Perlit v Uglerodistykh Stalyakh [Perlite in Carbon Steels] (Ekaterinburg: Ural Branch of RAN: 2006) (in Russian).
  36. S. V. Bobyr, Fundamentalnye i Prikladnye Problemy Chyornoy Metallurgii: Sb. Nauchnykh Trudov [Fundamental and Applied Problems of Ferrous Metallurgy: Collected Scientific Papers] (Kyiv: Naukova Dumka: 2008), Iss. 18, p. 257 (in Russian).
  37. S. V. Bobyr and V. I. Bolshakov, Novi Materialy i Tekhnologii v Metalurgii ta Mashynobuduvanni, No. 1: 21 (2012) (in Ukrainian).
  38. V. I. Bolshakov, K. F. Starodubov, and M. A. Tylkin, Termicheskaya Obrabotka Stroitel'noy Stali Povyshennoy Prochnosti [Heat Treatment of Constructional High-Strength Steel] (Moscow: Metallurgiya: 1977) (in Russian).
  39. H. D. K. H. Bhadeshia, Bainite in Steels (Cambridge: The University Press: 2001).
  40. D. Zotov, O. Uzlov, V. Bolshakov, A. Weiss, and P. R. Sheller, Proc. of the 59th Int. Conf. 'Freiberger Forschungsforum Berg- und Hüttenmännischer Tag (BHT-2008)' (11–13 July, 2008, Freiberg), p. 238.
  41. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Struktura Termicheski Obrabotannoy Stali [Structure of the Heat-Treated Steel] (Moscow: Metallurgiya: 1994) (in Russian).
Cited By (1)
  1. S. V. Bobyr and V. I. Bolshakov, Metallofiz. Noveishie Tekhnol. 38, 981 (2016).