Quantum-Statistical Model of Electron–Ion System of Fe Alloys

O. I. Mitsek

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 18.04.2012. Download: PDF

Both molecules and all types of condensed matter (solids etc.) are created by means of the Coulomb diagonal and nondiagonal (covalent) bonds. However, the band bonds of free electrons are typical for metals. The quantum statistics describes increasing competition of the band and covalent bonds with a motion down the Mendeleev table: from almost band (nontransition) metals to transition metals and alloys with a changing filling of $nd$- ($n \geq 3$) and $mf$- ($m \geq 4$) ionic shells. The Bogolyubov’s Green functions’ method in the band fermions ($f_{r\sigma}$) representations at the sites $r$ with the spin $\sigma$ and in the representation of the many-electron operator spinors (MEOS) $D_{r}(S_{r}, L_{r})$ of ionic shells with the spin $S_{r}$ and orbital moment $L_{r}$ gives the spectra of band fermions and chemical (covalent) bonds’ fluctuations (CBF). Almost band (Cu–Ni like) one-phase (f.c.c.) alloys and polymorphic ones (Fe alloys) with dominating the covalent ionic and spin (exchange) bonds are compared. The Fourier expansion of MEOS ($D_{k}$) and fermions $f_{k}$ extracts the CBF branches $E_{k}$, band $\tilde{\varepsilon_{k}}$, magnon and other branches from pair interactions. Hence, the crossing whith CBF near the Fermi surfaces $\varepsilon_{F}(k_{F})$ leads to the $ ilde{\varepsilon_k}$ anomalies and density of states (DOS($E$)) singularities. The defects of elastic modulus, Invar effects near the b.c.c.–f.c.c. phase transitions are calculated. The magnetic order type (ferromagnetic (FM) or antiferromagnetic (AFM), clusters, etc.) is determined by bonding or antibonding covalent (and exchange) interactions. The theory describes the reduction of local symmetry at the introduction of light impurities (as C) by a form of the internal friction peak $Q^{-1}(T)$ as a function of temperature $T$. The hybridization of $ms–nd$-electrons through the Fe$^{57}$ covalent bonds expresses hyperfine fields $H_{F}$ through the mean spins $S_{T}$ of the metal matrix, and the isomeric displacement of $\gamma$-lines $R_{c}$ through the CBF as a function of $T$ and alloy concentration.

Keywords: competition of band and covalent bonds, defects of strain modulus, Ке effect, fluctuations of chemical bonds, singularity of band spectrum, hyperfine fields, isomer shift.

PACS: 71.20.Be, 71.70.Gm, 75.10.Dg, 75.10.Lp, 75.30.Et, 75.30.Mb, 75.50.Bb

DOI: https://doi.org/10.15407/ufm.13.04.345

Citation: O. I. Mitsek, Quantum-Statistical Model of Electron–Ion System of Fe Alloys, Usp. Fiz. Met., 13, No. 4: 345—381 (2012) (in Russian), doi: 10.15407/ufm.13.04.345


References (21)  
  1. A. I. Mitsek, Uspekhi Fiziki Metallov, 6, No. 3: 233 (2005).
  2. A. I. Mitsek, V. N. Pushkar', Metallofiz. Noveishie Tekhnol., 32, No. 11: 1517 (2010).
  3. Magnetic Properties of Metals (Ed. H. P. J. Wijn) (Berlin: Springer-Verlag: 1991). Crossref
  4. A. I. Mitsek, Metallofiz. Noveishie Tekhnol., 25, No. 1: 7 (2003).
  5. Dzh. Smart, Effektivnoe pole v teorii magnetizma (Moskva: Mir: 1968).
  6. A. I. Mitsek, V. N. Pushkar', Metallofiz. Noveishie Tekhnol., 34, No. 1: 1 (2012).
  7. A. I. Mitsek, Uspekhi Fiziki Metallov, 11, No. 1: 61 (2010). Crossref
  8. B. I. Nikolin, Mnogosloynye struktury i politipizm v metallicheskikh splavakh (Kiev: Naukova dumka: 1984).
  9. A. Yu. Gaevskiy, Metallofiz. Noveishie Tekhnol., 28, No. 2: 137 (2006).
  10. A. I. Mitsek, Fazovye perekhody v kristallakh s magnitnoy strukturoy (Kiev: Naukova dumka: 1989).
  11. S. V. Vonsovskiy, Magnetizm (Moskva: Nauka: 1971).
  12. E. I. Kondorskiy, Zonnaya teoriya magnetizma (Moskva: Izdatel'stvo Moskovskogo universiteta: 1977).
  13. Effekt Messbauera: Sb. statey (red. Yu. Kagan) (Moskva: Izdatel'stvo inostrannoy literatury: 1962).
  14. E. Gartstein and A.Rabinkin, Acta Metal., 27, No. 5: 1053 (1979). Crossref
  15. A. I. Mitsek, V. N. Pushkar', Metallofiz. noveyshie tekhnol., 30, No. 12: 1591 (2008).
  16. Yu. P. Irkhin, V. Yu. Irkhin, Elektronnoe stroenie i fizicheskie svoystva perekhodnykh metallov (Sverdlovsk: Izd-vo Ural. gos. un-ta: 1989).
  17. A. I. Mitsek, V. N. Pushkar', Real'nye kristally s magnitnym poryadkom (Kiev: Naukova dumka: 1978).
  18. G. Shul'tse, Metallofizika (Moskva: Mir: 1971).
  19. Ke Tin-suy, Tszen Chi-tszyan, FMM, 4, No. 2: 291 (1957).
  20. V. D. Verner, FTT, 7, No. 8: 2318 (1965).
  21. V. M. Nadutov, T. V. Golub, O. V. Khimenyuk, Metallofiz. Noveishie Tekhnol., 29, No. 12: 1621 (2007).
Cited By (3)
  1. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol. 37, 433 (2016).
  2. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol. 36, 103 (2016).
  3. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol. 37, 13 (2016).