Evolution of Pores in Nanoshells — a Competition of Direct and Inverse Kirkendall Effects, Frenkel and Gibbs–Thomson Effects: the Phenomenological Description and Computer Simulation

T. V. Zaporozhets’, A. M. Gusak, O. M. Podolyan

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., 18031 Cherkasy, Ukraine

Received: 15.07.2011. Download: PDF

The review consists of analysis of causes, driving forces, and mechanisms of formation and shrinkage of pores within the nanoparticles with a closed geometry. Taking into account the effects analysed within the scope of quasistationary approximation, several phenomenological models are proposed to describe the solid-solutions’ and intermetallic-compounds’ nanoshells’ evolution. A three-dimensional Monte-Carlo model, which allows simulating competition of such effects at the atomic level, in particular, segregation and its effect on the stability of hollow nanoshells, as well as the impact of both the temperature and the particle size on the pore formation, is suggested. Both approaches allow to consider the stages of formation and shrinking as separate ones or as ‘one and indivisible life-cycle’.

Keywords: interdiffusion, nanoshell, vacancy, pore, Kirkendall effect, Gibbs–Thomson effect, segregation.

PACS: 61.43.Gt, 61.46.Fg, 61.46.Np, 61.72.jd, 61.72.Qq, 64.75.Jk, 66.30.Pa

DOI: https://doi.org/10.15407/ufm.13.01.001

Citation: T. V. Zaporozhets’, A. M. Gusak, and O. M. Podolyan, Evolution of Pores in Nanoshells — a Competition of Direct and Inverse Kirkendall Effects, Frenkel and Gibbs–Thomson Effects: the Phenomenological Description and Computer Simulation, Usp. Fiz. Met., 13, No. 1: 1—70 (2012) (in Russian), doi: 10.15407/ufm.13.01.001


References (55)  
  1. A. D. Smigelskas and E. O. Kirkendall, Trans. AIME, 171: 130 (1947).
  2. H. Nakajima, Journal of Metals, 49, No. 6: 15 (1997).
  3. Y. Yin, R. M. Rioux, C. K. Erdonmez et al., Science, 30430: 711 (2004). Crossref
  4. C. M. Wang, D. R. Baer, L. E. Thomas et al., J. Appl. Phys., 98: 094308 (2005). Crossref
  5. Y. Yin, C. K. Erdonmez, A. Cabot et al., Adv. Funct. Mater., 16: 1389 (2006). Crossref
  6. A. Cabot, V. F. Puntes, E. Shevchenko et al., J. Am. Chem. Soc., 129, No. 34: 10358 (2007). Crossref
  7. H. J. Fan, M. Knez, R. Scholz et al., NanoLett, 7, No. 4: 993 (2007). Crossref
  8. R. Nakamura, J.-G. Lee, D. Tokozakura et al., Mater. Lett., 61: 1060 (2007). Crossref
  9. R. Nakamura, D. Tokozakura, H. Nakajima et al., J. Appl. Phys., 101: 07430 (2007).
  10. D. Tokozakura, R. Nakamura, H. Nakajima et al., Mater. Res., 22, No. 10: 2930 (2007). Crossref
  11. R. Nakamura, J.-G. Lee, H. Morix, and H. Nakajima, Philos. Mag., 88, No. 2: 257 (2008). Crossref
  12. R. Nakamura, D. Tokozakura, J.-G. Lee et al., Acta Mater., 56: 5276 (2008). Crossref
  13. R. Nakamura, G. Matsubayashi, H. Tsuchiya et al., Acta Mater., 57: 4261 (2009). Crossref
  14. K. N. Tu and U. Gösele, Applied Physics Letters, 86: 093111 (2005). Crossref
  15. A. M. Gusak, T. V. Zaporozhets, K. N. Tu, and U. Gösele, Philos. Mag., 85, No. 36: 4445 (2005). Crossref
  16. A. M. Gusak and K. N. Tu, Acta Mater., 57: 336 (2009). Crossref
  17. A. M. Gusak and T. V. Zaporozhets, J. Phys.: Condens. Matter, 21: 415303 (2009). Crossref
  18. T. V. Zaporozhets, A. M. Gusak, Metallofiz. Noveishie Tekhnol., 31, No. 1: 1 (2009).
  19. F. Aldinger, Acta Metall., 22: 923 (1974). Crossref
  20. Ya. E. Geguzin, Diffuzionnaya zona (Moskva: Nauka: 1979).
  21. Ya. E. Geguzin, Yu. I. Klinchuk, L. N. Paritskaya, Fiz. Met. Metalloved., 43: 602 (1977).
  22. R. A. Masumura, B. B. Rath, and C. S. Pande, Acta Mater., 50: 4535 (2002). Crossref
  23. V. V. Slezov, Sov. Sci. Rev., 17, part 3: 211 (1995).
  24. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science (Amsterdam: MacMillan: 1992).
  25. R. Kirchheim, Acta Metall. Mater., 40: 309 (1992). Crossref
  26. M. A. Korhonen, P. Borgesen, K. N. Tu, and C.-Y. Li, J. Appl. Phys., 73: 3790 (1993). Crossref
  27. T. V. Zaporozhets, A. M. Gusak, K. N. Tu, and S. G. Mhaisalkar, J. Appl. Phys., 98: 103508 (2005). Crossref
  28. A. T. Huang, A. M. Gusak, K. N. Tu, and Yi-Shao Lai, Appl. Phys. Lett., 88: 141911 (2006). Crossref
  29. K. P. Gurov, A. M. Gusak, Fiz. Met. Metalloved., 59: 1062 (1985).
  30. A. M. Gusak and K. P. Gurov, Proceedings of PTM-94 (USA: 1994), p. 1133.
  31. A. M. Gusak, S. V. Kornienko, and G. V. Lutsenko, Defects and Diffusion Forum, 264: 109 (2007).
  32. G. B. Stephenson, Acta Metall., 10: 2663 (1988). Crossref
  33. M. J. H. van Dal, A. M. Gusak, C. Cserhati et al., Phys. Rev. Lett., 86: 3352 (2001). Crossref
  34. F. H. Van Dal, A. M. Gusak, C. Cserhati et al., Philos. Mag. A, 82, No. 5: 943 (2002). Crossref
  35. A. Kodentsov, A. Paul, M. J. H. Van Dal et al., Crit. Rev. Solid State Mater. Sci., 33: 210 (2008). Crossref
  36. A. D. Marwick, J. Phys. F, 8: 1849 (1978). Crossref
  37. A. D. Marwick, J. Nucl. Mater., 135: 68 (1985). Crossref
  38. A. V. Nazarov, K. P. Gurov, Fiz. met. metalloved., 37: 496 (1973).
  39. A. V. Evteev, E. V. Levchenko, I. V. Belova, and G. E. Murch, Philos. Mag., 88: 1525 (2008). Crossref
  40. A. V. Evteev, E. V. Levchenko, I. V. Belova, and G. E. Murch, Philos. Mag., 87: 3787 (2007). Crossref
  41. A. V. Evteev, E. V. Levchenko, I. V. Belova, and G. E. Murch, Defect and Diffusion Forum, 277: 21 (2008).
  42. A. M. Gusak, T. V. Zaporozhets, Yu. O. Lyashenko et al., Diffusion-Controlled Solid State Reactions in Alloys, Thin Films, and Nanosystems (Berlin: Wiley–VCH: 2010). Crossref
  43. W. R. A. Johnson and P. J. White, Phys. Rev. B, 18: 2939 (1978). Crossref
  44. T. Pabisiak and A. Kiejna, Solid State Commun., 144: 324 (2007). Crossref
  45. T. V. Zaporozhets', Visnyk Cherkas'kogo Universytetu, 141: 103 (2008).
  46. J. R. Manning, Am. J. Phys., 36, No. 10: 922 (1968). Crossref
  47. A. M. Gusak and M. V. Yarmolenko, J. Appl. Phys., 73, No. 10: 4881 (1993). Crossref
  48. F. Hodaj and A. M. Gusak, Acta Mater., 52: 4305 (2004). Crossref
  49. Dzh. Kristian, Teoriya prevrashcheniy v metallakh i splavakh (Moskva: Mir: 1978).
  50. M. O. Pasichnyy, G. Schmitz, A. M. Gusak, and V. Vovk, Phys. Rev. B, 72: 014118 (2005). Crossref
  51. G. Glodan, C. Cserhati, I. Beszeda, and D. L. Beke, Appl. Phys. Lett., 97: 113109 (2010). Crossref
  52. G. Glodan, C. Cserhati, I. Beszeda, and D. L. Beke, DIMAT 2011 (Dijon, France), abstract O1.4.
  53. O. M. Podolyan, T. V. Zaporozhets', Ukrainian Journal of Physics, 56, No. 9: 929 (2011).
  54. T. V. Zaporozhets', O. M. Podolyan, A. M. Gusak, Metallofiz. Noveishie Tekhnol., 34, No. 1: 111 (2012).
  55. A. M. Gusak, F. Hodaj, and T. V. Zaporozhets, Philos. Mag. Lett., 91, No. 12: 741 (2011). Crossref
Cited By (1)
  1. O.A. Molebnyi, A.L. Berezina and A.V. Kotko, Acta Phys. Pol. A 128, 564 (2015).