Stress Raisers and Their Role in Formation of Mechanical Properties of Polycrystals with the Nanosize Components of Structure

P. Yu. Volosevych

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 22.10.2010. Download: PDF

Applicability of the d’Alembert principle for the description of plastic deformation in terms of the modern conceptions of physics of metals is considered. It is offered to consider the stress concentrators as points of interaction between the parts of a sample or elements of its structure. The dependence of their actual quantity on the strain rate is determined, and features of change of stress-growth rate at concentrator peaks are described as function of their number and strength. Within the scope of the d’Alembert principle, the process of plastic deformation is represented as two progressive phenomena, namely, the growth of stresses in tops of concentrators at a microlevel during a choice of the weakest section of a sample and the stress relaxation in tops of actual concentrators because of the loss of mechanical stability at a macrolevel. The determining roles of a quantity of concentrators and their strength in formation of mechanical properties are specified.

Keywords: concentrator of stresses, micromechanisms of relaxation and growth of stresses, stress growth rate.

PACS: 46.50.+a, 62.20.F-, 62.20.M-, 62.23.-c, 62.25.Mn, 62.40.+i, 83.50.-v

DOI: https://doi.org/10.15407/ufm.12.03.367

Citation: P. Yu. Volosevych, Stress Raisers and Their Role in Formation of Mechanical Properties of Polycrystals with the Nanosize Components of Structure, Usp. Fiz. Met., 12, No. 3: 367—382 (2011) (in Russian), doi: 10.15407/ufm.12.03.367


References (30)  
  1. G. Neyber, Kontsentratsiya napryazheniy (Moskva–Leningrad: Gostekhizdat: 1947) (German translation).
  2. Fizicheskiy entsiklopedicheskiy slovar'. T. 2 (Moskva: Sovetskaya entsiklopediya: 1962).
  3. Dzh. T. Khan, B. L. Averbakh, V. S. Ouen, M. Koen, Atomnyy mekhanizm razrusheniya (Moskva: Metallurgizdat: 1963), s. 109 (per. s angl.).
  4. E. Orovan, Atomnyy mekhanizm razrusheniya (Moskva: Metallurgizdat: 1963), s. 170 (English translation).
  5. V. S. Ivanova, L. K. Gordienko, V. N. Geminov et al., Rol' dislokatsiy v uprochnenii i razrushenii metallov (Moskva: Nauka: 1965).
  6. V. M. Finkel', Fizika razrusheniya (Moskva: Metallurgiya: 1970).
  7. R. Khonikomb, Plasticheskaya deformatsiya metallov (Moskva: Mir: 1972) (English translation).
  8. V. I. Trefilov, Yu. V. Mil'man, S. A. Firstov, Fizicheskie osnovy prochnosti tugoplavkikh metallov (Kiev: Naukova dumka: 1975).
  9. G. S. Pisarenko, A. A. Lebedev, Deformirovanie i prochnost' materialov pri slozhnom napryazhennom sostoyanii (Kiev: Naukova dumka: 1976).
  10. Dzh. Nott, Osnovy mekhaniki razrusheniya (Moskva: Metallurgiya: 1978) (English translation).
  11. L. A. Koppel'man, Soprotivlenie svarnykh uzlov khrupkomu razrusheniyu (Leningrad: Mashinostroenie: 1978).
  12. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskiy et al., Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh metallov (Kiev: Naukova Dumka: 1979).
  13. O. N. Romaniv, Vyazkost' razrusheniya konstruktsionnykh staley (Moskva: Metallurgiya: 1979).
  14. V. V. Rybin, A. N. Orlov, V. N. Perevezentsev, Granitsy zeren v metallakh (Moskva: Metallurgiya: 1980).
  15. V. M. Kosevich, V. M. Ievlev, L. S. Palatnik, A. I. Fedorenko, Struktura mezhkristallitnykh i mezhfaznykh granits (Moskva: Metallurgiya: 1980).
  16. Yu. Ya. Meshkov, Fizicheskie osnovy razrusheniya stal'nykh konstruktsiy (Kiev: Naukova dumka: 1981).
  17. O. A. Kaybyshev, R. 3. Valiev, V. G. Khayrullin, Fiz. Met. Metalloved., 56, No. 3: 577 (1983).
  18. V. E. Panin, V. A. Likhachev, O. V. Grinyaev, Strukturnye urovni deformatsii tverdykh tel (Moskva: Nauka: 1985).
  19. V. F. Moiseev, Khladnolomkost' OTsK metallov i fizicheskaya interpretatsiya koeffitsienta K1s (Kiev: 1995) (Prepr./NAN Ukrainy, In-t problem materialovedeniya. No. 95-8, 1995).
  20. V. V. Rybin, Bol'shie plasticheskie deformatsii i razrushenie metallov (Moskva: Metallurgiya: 1986).
  21. S. A. Firstov, Progressivnye materialy i tekhnologii (Kiev: IPM NANU: 2003), t. 2.
  22. G. A. Malygin, Uspekhi Fiz. Nauk, 169, No. 9: 979 (1999). Crossref
  23. A. M. Parshin, A. P. Petkova, Fizika i khimiya obrabotki materialov, No. 3: 79 (2000).
  24. P. Yu. Volosevich, Yu. A. Garasim, N. I. Danilenko, V. M. Adeev, D. I. Nikonenko, Metallofiz. Noveishie Tekhnol., 24, No. 3: 413 (2002).
  25. E. V. Sudarikova, Nerazrushayushchiy kontrol' v proizvodstve: Ucheb. posobie. Ch. 1 (Sankt-Peterburg: GUAP: 2007).
  26. S. A. Kotrechko, A. V. Filatov, A. V. Ovsyannikov, Metallofiz. Noveishie Tekhnol., 26, No. 11: 1475 (2004).
  27. P. Yu. Volosevich, Metallofiz. Noveishie Tekhnol., 29, No. 10: 1393 (2007).
  28. P. Yu. Volosevich, 4a Mіzhnarodna konferentsіya "Mekhanіka ruynuvannya materіalіv і mіtsnіst' konstruktsіy" (23–27 June 2009, L'vіv), s. 93.
  29. P. Yu. Volosevich, Metallofiz. Noveishie Tekhnol., 32, No. 3: 413 (2010).
  30. S. A. Firstov, Progressivnye materialy i tekhnologii (Kiev: Akademperiodika: 2003).
Cited By (2)
  1. G. I. Prokopenko, B. M. Mordyuk, P. Yu. Volosevych, S. P. Vorona et al., Metallofiz. Noveishie Tekhnol. 39, 189 (2017).
  2. P. Yu. Volosevich and A. V. Shiyan, Steel Transl. 45, 460 (2015).