Universal Character of Tunnelling Conductance of Metal–Insulator–Metal Heterostructures with Nanosize Oxide Interlayers

M. A. Belogolovskii$^{1}$, I. V. Boilo$^{1}$, V. E. Shaternik$^{2}$

$^1$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 22.02.2011. Download: PDF

Two universal effects in tunnel characteristics of layered metal—insulator—metal structures, where the dielectric barrier is formed by a nanoscale disordered oxide film, are discussed, namely: (1) a universal distribution of the layer transparencies, which does not depend on specific microscopic characteristics, and (2) the power-law change of the differential conductance of such heterostructures with an exponent value close to 1.33. Experimental results for superconducting three- and four-layered structures with inhomogeneous tunnel barriers are given and confirm the existence of a universal distribution of transparencies. Their simple theoretical interpretation based on the equipartition hypothesis of a product of the barrier height on the path, which is passed by an electron within the barrier, is given too. As shown, with increasing thickness of the defect-insulating layer, boson-assisted inelastic tunnelling becomes a dominant conduction mechanism resulting in the power-law differential conductance dependence on voltage with an exponent value, which characterizes the number of states localized inside the barrier and involved in the charge transfer through it. As shown for materials with a phonon density of states, which weakly depends on energy, the exponent value about 1.33 corresponds to hopping tunnelling conductance involving two defect states. Relevant experimental data for near-surface disordered dielectric layers in manganites are discussed in details.

Keywords: tunneling conductance, layered metal–dielectric–metal systems, nanoscale dielectric layers, defects structure, universality.

PACS: 73.23.-b, 73.40.Gk, 73.40.Rw, 74.50.+r, 74.78.Na, 75.47.Lx, 85.25.Am

DOI: https://doi.org/10.15407/ufm.12.02.157

Citation: M. A. Belogolovskii, I. V. Boilo, and V. E. Shaternik, Universal Character of Tunnelling Conductance of Metal–Insulator–Metal Heterostructures with Nanosize Oxide Interlayers, Usp. Fiz. Met., 12, No. 2: 157—181 (2011) (in Russian), doi: 10.15407/ufm.12.02.157


References (48)  
  1. R. Landauer, Philos. Mag., 21: 863 (1970). Crossref
  2. M. Büttiker, Y. Imry, R. Landauer et al., Phys. Rev. B, 31: 6207 (1985). Crossref
  3. M. Büttiker, Phys. Rev. Lett., 65: 2901 (1990). Crossref
  4. S. Dutta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press: 1995). Crossref
  5. Sh. M. Kogan, UFN, 145: 285 (1985). Crossref
  6. M. B. Weissman, Rev. Mod. Phys., 60: 537 (1988). Crossref
  7. G. P. Zhigal'skiy, UFN, 167: 623 (1997). Crossref
  8. A. Gokse, E. R. Nowak, S. H. Yang et al., J. Appl. Phys., 99: 08A906 (2006).
  9. V. M. Svistunov, V. N. Leonova, M. A. Belogolovskii et al., Mod. Phys. Lett. B, 22: 2811 (2008). Crossref
  10. B. K. Nikolić and P. B. Allen, Phys. Rev. B, 63: R020201 (2001).
  11. K. M. Schep and G. E. W. Bauer, Phys. Rev. Lett., 78: 3015 (1997). Crossref
  12. O. N. Dorokhov, Pis'ma v ZhETF, 36: 259 (1982).
  13. Yu. V. Nazarov, Phys. Rev. Lett., 73: 134 (1994). Crossref
  14. A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett., 76: 3806 (1996). Crossref
  15. R. J. Schoelkopf, P. J. Burke, A. Kozhevnikov et al., Phys. Rev. Lett., 78: 3370 (1997). Crossref
  16. G. Blonder, M. Tinkham, and T. Klapwijk, Phys. Rev. B, 25: 4515 (1982). Crossref
  17. J. R. Kirtley, Int. J. Mod. Phys. B, 4: 201 (1990). Crossref
  18. D. Averin and A. Bardas, Phys. Rev. Lett., 75: 1831 (1995). Crossref
  19. A. Bardas and D. V. Averin, Phys. Rev. B, 56, No. 14: R8518 (1997). Crossref
  20. Y. Naveh, V. Patel, D. V. Averin et al., Phys. Rev. Lett., 85: 5404 (2000). Crossref
  21. K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Amsterdam: Gordon and Breach: 1991).
  22. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford: Oxford University Press: 1985).
  23. V. Lacquaniti, N. De Leo, M. Fretto et al., J. Appl. Phys., 108: 093701 (2010). Crossref
  24. M. Gurvitch, M. Washington, and H. Huggins, Appl. Phys. Lett., 42: 472 (1983). Crossref
  25. A. A. Golubov, E. P. Houwman, J. G. Gijsbertsen et al., Phys. Rev. B, 51: 1073 (1995). Crossref
  26. G. Blonder, M. Tinkham, and T. Klapwijk, Phys. Rev. B, 25: 4515 (1982). Crossref
  27. J. A. Melsen and C. W. J. Beenakker, Physica B, 203: 219 (1994). Crossref
  28. D. J. Kim, W. S. Choi, F. Schleicher et al., Appl. Phys. Lett., 97: 263502 (2010). Crossref
  29. A. Gokse, E. R. Nowak, S. H. Yang et al., J. Appl. Phys., 99: 08A906 (2006).
  30. Y. Xu, D. Ephron, and M. R. Beasley, Phys. Rev. B, 52: 2843 (1995). Crossref
  31. J. K. Julin, P. J. Koppinen, and I. J. Maasilta, Appl. Phys. Lett., 97: 152501 (2010). Crossref
  32. C. T. Rogers and R. A. Buhrman, Phys. Rev. Lett., 53: 1272 (1984). Crossref
  33. V, Shaternik, S. Larkin, V. Noskov et al., J. Phys.: Conf. Ser., 97: 012243 (2008). Crossref
  34. V. Shaternik, S. Larkin, and M. Belogolovskii, Int. J. Mod. Phys. B, 23: 3520 (2009). Crossref
  35. V. E. Shaternik, S. Yu. Larkin, M. A. Belogolovskii et al., Metallofiz. Noveishie Tekhnol., 31, No. 2: 271 (2009).
  36. V. E. Shaternik, S. Yu. Larkin, V. L. Noskov et al., J. Phys.: Conf. Ser., 234: 042032 (2010). Crossref
  37. V. E. Shaternik, S. Yu. Larkin, and T. A. Khachaturova, Physica C, 435: 96 (2006). Crossref
  38. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (New York: Oxford University Press: 1979).
  39. V. M. Svistunov, M. A. Belogolovskiy, Tunnel'naya spektroskopiya kvazichastichnykh vozbuzhdeniy v metallakh (Kiev: Naukova dumka: 1986).
  40. L. I. Glazman, K. A. Matveev, ZhETF, 94: 332 (1988).
  41. M. A. Belogolovskii, Cent. Eur. J. Phys., 7: 304 (2009). Crossref
  42. J. G. Simmons, J. Appl. Phys., 34: 1793 (1963). Crossref
  43. T. Kiyomura, Y. Maruo, and M. Gomi, J. Appl. Phys., 88: 4768 (2000). Crossref
  44. S. Mitani, T. Moriyama, and K. Takanashi, J. Appl. Phys., 93: 8041 (2003). Crossref
  45. S. Yuasa, T. Nagahama, A. Fukushima et al., Nat. Mater., 3: 868 (2004). Crossref
  46. V. M. Loktev, Yu. G. Pogorelov, Fiz. nizk. temperatur, 26: 231 (2000).
  47. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer-Verlag: 2003). Crossref
  48. C. P. Adams, J. W. Lynn, V. N. Smolyaninova et al., Phys. Rev. B, 70: 134414 (2004). Crossref
Cited By (1)
  1. A. V. Shaternik, A. P. Shapovalov and T. O. Prikhna, J. Superhard Mater. 36, 180 (2014).