Zirconium Dodecaboride as the First Superconductor with the Improved Near-Surface Characteristics

M. A. Belogolovs’ky$^{1}$, V. G. But’ko$^{1}$, A. P. Shapovalov$^{2}$, V. E. Shaternyk$^{3}$

$^1$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine
$^2$V. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavods’ka Str., UA-04074 Kyiv, Ukraine
$^3$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 05.10.2010. Download: PDF

An overview of experimental results and theoretical calculations for zirconium dodecaboride single-crystal electronic characteristics is given. As shown, the ZrB$_{12}$ belongs to a class of partially covalent compounds of transition metals with light elements where the presence of boron directional covalent bonds is responsible for high mechanical hardness whereas metallic, and, hence, superconducting properties are formed by $d$-states of zirconium hybridized with $2p$-orbitals of boron. Analysis of experimental data obtained for ZrB$_{12}$ and YB$_{6}$ in different laboratories and with different techniques shows that, in contrast to yttrium hexaboride, zirconium dodecaboride is the first known superconductor with an enhanced near-surface order parameter. Qualitative explanation of the effect is presented and based on the Phillips theory of percolative superconductivity.

Keywords: zirconium dodecaboride, electron structure, superconductivity, electron–phonon interaction, surface characteristics.

PACS: 61.50.Lt, 71.15.Mb, 71.15.Nc, 71.20.Be, 74.10.+v, 74.20.-z, 74.70.Ad

DOI: https://doi.org/10.15407/ufm.11.04.509

Citation: M. A. Belogolovs’ky, V. G. But’ko, A. P. Shapovalov, and V. E. Shaternyk, Zirconium Dodecaboride as the First Superconductor with the Improved Near-Surface Characteristics, Usp. Fiz. Met., 11, No. 4: 509—524 (2010) (in Russian), doi: 10.15407/ufm.11.04.509


References (43)  
  1. J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Nature, 410: 63 (2001). Crossref
  2. E. A. Ekimov, V. A. Sidorov, E. D. Bauer et al., Nature, 428: 542 (2004). Crossref
  3. E. Bustarett, C. Marcenat, P. Achatz et al., Nature, 444: 46 (2006). Crossref
  4. Z.-A. Ren, J. Kato, T. Muranaka et al., J. Phys. Soc. Jpn., 76: 103710 (2007). Crossref
  5. M. Kriener, Y. Maeno, T. Oguchi et al., Phys Rev B, 78: 024517 (2008). Crossref
  6. H. Kawaji, H.-O. Horie, S. Yamanaka, and M. Ishikawa, Phys. Rev. Lett., 74: 1427 (1995). Crossref
  7. K. Tanigaki, T. Shimizu, K. M. Itoh et al., Nature Mater., 2: 653 (2003). Crossref
  8. C. M. Varma, J. Zaanen, and K. Raghavachari, Science, 254: 989 (1991). Crossref
  9. T. E. Weller, M. Ellerby, S. S. Saxena et al., Nature Phys., 1: 39 (2005).
  10. N. Emery, C. Hérold, M. d'Astuto et al., Phys. Rev. Lett., 95: 087003 (2005). Crossref
  11. X. Blase, E. Bustarret, C. Chapelier et al., Nature Mater., 8: 375 (2009). Crossref
  12. T. I. Serebryakova and P. D. Neronov, High-Temperature Borides (Cambridge: Cambridge Sci Publ: 2003).
  13. Yu. B. Paderno, A. B. Layshchenko, V. B. Filippov, and A. V. Duhnenko, Science for Materials in the Frontier of Centuries: Advantages and Challenges (Ed. V. Skorokhod) (Kiev: IPMS, N.A.S. of Ukraine: 2002), p.34.
  14. M. I. Tsindlekht, G. I. Leviev, I. Asulin et al., Phys. Rev. B, 69: 212508 (2004). Crossref
  15. Yu. B. Kuz'ma, Kristallokhimiya boridov (L'vov: Vishcha shkola: 1983).
  16. A. Leithe-Jasper, A. Sato, and T. Tanaka, Z. Kristallogr. New Cryst. Struct., 217: 319 (2002). Crossref
  17. P. Blaha, K. Schwarz, G. K. H. Madsen et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology: 2001).
  18. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965). Crossref
  19. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  20. I. R. Shein, A. L. Ivanovskii, FTT, 45, No. 8: 1364 (2003).
  21. R. Lortz, Y. Wang, S. Abe et al., Phys. Rev. B, 72: 024547 (2005). Crossref
  22. P. De Zhen, Sverkhprovodimost' metallov i splavov (Moskva: Mir: 1968).
  23. H. J. Fink and W. C. H. Joiner, Phys. Rev. Lett., 23: 120 (1969). Crossref
  24. I. N. Khlyustikov and A. I. Buzdin, Adv. Phys., 36: 271 (1987). Crossref
  25. V. F. Kozhevnikov, M. J. Van Bael, P. K. Sahoo et al., New J. Phys., 9: 75 (2007). Crossref
  26. R. Khasanov, D. Di Castro, M. Belogolovskii et al., Phys. Rev. B, 72: 224509 (2005). Crossref
  27. D. Daghero, R. S. Gonnelli, G. A. Ummarino et al., Supercond. Sci. Technol., 17: 250 (2004). Crossref
  28. Y. Wang, R. Lortz, Yu. Paderno et al., Phys. Rev. B, 72: 024548 (2005). Crossref
  29. R. Lortz, Y. Wang, U. Tutsch et al., Phys. Rev. B, 73: 024512 (2006). Crossref
  30. M. I. Tsindlekht, V. M. Genkin, G. I. Leviev et al., Phys. Rev. B, 78: 024522 (2008). Crossref
  31. S. Kunii, T. Kasuya, K. Kadowaki et al., Solid State Commun., 52: 659 (1984). Crossref
  32. R. Schneider, J. Geerk, and H. Rietschel, Europhys. Lett., 4: 845 (1987). Crossref
  33. J. P. Carbotte, Rev. Mod. Phys., 62: 1027 (1990). Crossref
  34. A. M. Toxen, Phys. Rev. Lett., 15: 462 (1965). Crossref
  35. H. Tashiro, J. M. Graybeal, D. B. Tanner et al., Phys. Rev. B, 78: 014509 (2008). Crossref
  36. J. C. Phillips, Proc. Nat. Acad. Sci. USA, 107: 1307 (2010). Crossref
  37. J. C. Phillips, Chem. Phys. Lett., 473: 274 (2009). Crossref
  38. S. Otani, M. M. Korsukova, T. Mitsuhashi, and N. Kieda, J. Cryst. Growth, 217: 378 (2000). Crossref
  39. H. M. Chen, F. Zheng, H. S. Liu et al., J. Alloys Compd., 468: 209 (2009). Crossref
  40. S. C. Glotzer, J. Non-Cryst. Solids, 274: 342 (2000). Crossref
  41. A. Amir, Y. Oreg, and Y. Imry, Phys. Rev. Lett., 103: 126403 (2009). Crossref
  42. M. I. Tsindlekht, G. I. Leviev, V. M. Genkin et al., Phys. Rev. B, 73: 104507 (2006). Crossref
  43. P. Dutta and P. M. Horn, Rev. Mod. Phys., 53: 497 (1981). Crossref