Interatomic Interactions in F.C.C.-Ni–Fe Alloys

S. M. Bokoch$^{1,2,3,4}$, V. A. Tatarenko$^{2,5}$

$^1$Laboratoire Jean Kuntzmann, UMR 5224 CNRS, Tour IRMA, 51 rue des Mathematiques, B.P. 53, 38041 Grenoble Cedex 9, France
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5—7, 10117 Berlin, Germany
$^4$Groupe de Physique des Matériaux, UMR 6634 CNRS, Université de Rouen, Ave. de l’Université, B.P. 12, F-76801 Saint Etienne du Rouvray Cedex, France
$^5$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 20.09.2010; final version - 21.11.2010. Download: PDF

Within the scope of the self-consistent-field (SCF) and mean-SCF (MSCF) approximations, static-concentration-waves and Matsubara—Kanzaki—Krivoglaz lattice statics methods, on the basis of state-of-the-art diffraction data concerning coherent and diffuse scattering of radiations in (dis)ordered f.c.c.-Ni— Fe alloys for various composition—temperature regions, and on the basis of data of independent magnetic measurements, the regular parameterization and estimation of ‘pair-wise’ interatomic interactions of the various nature (namely, ‘direct’ short-range ‘electrochemical’ and magnetic contributions as well as indirect long-range ‘strain-induced’ interaction) have been carried out taking into account their concentration and temperature dependences. As shown unfortunately, many of available ‘electrochemical’ interaction parameters obtained with use of the well-known ab initio and semi-phenomenological computational methodologies are limited in their applications for the statisticalthermodynamic analysis of f.c.c.-Ni—Fe alloys because most of them are contrary to the regularities of a ‘mixing’-energy symmetry and, as a result, to the symmetries of observed L1$_{2}$-Ni$_{3}$Fe-, L1$_{0}$-NiFe or L1$_{2}$-Fe$_{3}$Ni-type ordered phases. The ‘strain-induced’ interaction energy is anisotropic, long-range and quasi-oscillating function of a distance between the solute atoms in a host crystal (throughout the temperature—concentration region of f.c.c.-Ni—Fe alloys). Combined ‘paramagnetic’ contribution to the ‘mixing’ energy depends implicitly and essentially on concentration of Fe atoms, and its minimum Fourier-component values fall in the range of Invar compositions of Ni—Fe alloy. The temperature dependence of total ‘mixing’ energy is mainly due to the significant temperature-dependent magnetic contribution to it, and there is no need to take into account the effects of both substitutional correlations between atoms and many-particle interatomic-force interactions for characterization of microstructures developed by atomic ordering and (or) solid-phase precipitation in f.c.c.-Ni—Fe alloys. As expected, within the scope of the MSCF approximation, the estimated energy parameters of ‘exchange’ interactions in 1st coordination shell, $J_{NiNi}(r_{I})$ and $J_{NiFe}(r_{I})$, correspond to the ferromagnetic interaction between magnetic moments in Ni—Ni and Ni—Fe atomic pairs, and $J_{FeFe}(r_{I})$ corresponds to the antiferromagnetic interaction between magnetic moments in Fe—Fe atomic pairs.

Keywords: Ni—Fe alloys, interatomic interactions, statistical thermodynamics, order—disorder transformations, magnetic transitions, diffuse scattering.

PACS: 61.50.Ah, 61.50.Lt, 61.72.Bb, 64.60.Cn, 75.30.Et, 75.50.Bb, 81.30.Hd

DOI: https://doi.org/10.15407/ufm.11.04.413

Citation: S. M. Bokoch and V. A. Tatarenko, Interatomic Interactions in F.C.C.-Ni–Fe Alloys, Usp. Fiz. Met., 11, No. 4: 413—460 (2010), doi: 10.15407/ufm.11.04.413


References (137)  
  1. A. P. Miodownik, Physics and Applications of Invar Alloys. Honda Memorial Series on Materials Science, No. 3 (Eds. H. Saito et al.) (Tokyo: Maruzen Company, Ltd.: 1978), chap.​12, p. 288.
  2. G. Béranger, F. Duffaut, J. Morlet, and J.-F. Tiers, Les Alliages De Fer et De Nickel. Cent ans après la découverte de l'Invar… (Londres–Paris–New York: Technique  Documentation: 1996).
  3. V. L. Sedov, Antiferromagnetism of γ-Fe. Problem of Invar (Moscow: Nauka: 1987) (in Russian).
  4. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, J. Phase Equil., 12: 288 (1991).
  5. G. Cassiamani, J. de Keyzer, R. Ferro, U. E. Klotz, J. Lacaze, and P. Wollants, Intermetallics, 14: 1312 (2006). Crossref
  6. J. Crangle and G.C. Hallam, Proc. Roy. Soc. A, 272: 119 (1963). Crossref
  7. C. E. Johnson, M. S. Ridout, and T. E. Cranshaw, Proc. Phys. Soc., 81: 1079 (1963). Crossref
  8. W. L. Wilson and R. W. Gould, J. Appl. Crystallogr., 5: 125 (1972). Crossref
  9. T. G. Kollie and C. R. Brooks, Phys. Stat. Sol. A, 19: 545 (1973). Crossref
  10. J. W. Cable and E. O. Wollan, Phys. Rev. B, 7: 2005 (1973). Crossref
  11. J. W. Drijver, F. van der Woude, and S. Radelaar, Phys. Rev. B, 16: 985 (1977). Crossref
  12. J. W. Drijver, F. van der Woude, and S. Radelaar, Phys. Rev. B, 16: 993 (1977). Crossref
  13. J.-P. Simon, O. Lyon, F. Faudot, L. Boulanger, and O. Dimitrov, Acta Metall. Mater., 40: 2693 (1992). Crossref
  14. P. R. Munroe and M. Hatherly, Scripta Metall. Mater., 32: 93 (1995). Crossref
  15. T. Horiuchi, M. Igarashi, F. Abe, and T. Mohri, Calphad, 26: 591 (2002). Crossref
  16. V. Crisan, P. Entel, H. Ebert et al., Phys. Rev. B, 66: 014416 (2002). Crossref
  17. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Acta Mater., 53: 4029 (2005). Crossref
  18. I. A. Abrikosov, O. Eriksson, P. Söderlind, H. L. Skriver, and B. Johansson, Phys. Rev. B, 51: 1058 (1995). Crossref
  19. M. van Schilfgaarde, I. A. Abrikosov, and B. Johansson, Nature, 400: 46 (1999). Crossref
  20. F. Liot, S. I. Simak, and I. A. Abrikosov, J. Appl. Phys., 99: 08P906 (2006).
  21. I. A. Abrikosov, F. Liot, T. Marten, and E. A. Smirnova, J. Magn. Magn. Mater., 300: 211 (2006). Crossref
  22. I. A. Abrikosov, A. E. Kissavos, F. Liot et al., Phys. Rev. B, 76: 014434 (2007). Crossref
  23. C. Asker, L. Vitos, and I. A. Abrikosov, Phys. Rev. B, 79: 214112 (2009). Crossref
  24. F. Liot and I. A. Abrikosov, Phys. Rev. B, 79: 014202 (2009). Crossref
  25. A. G. Khachaturyan, Prog. Mat. Sci., 22: 1 (1978). Crossref
  26. A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley  Sons: 1983).
  27. D. de Fontaine, Solid State Physics, vol. 34 (Eds. H. Ehrenreich, F. Seits, and D. Turnbull) (New York: Academic Press: 1979), p. 73.
  28. M. A. Krivoglaz and A. A. Smirnov, The Theory of Order–Disorder in Alloys, (London: Macdonald: 1969).
  29. F. Ducastelle, Order and Phase Stability in Alloys (New York: Elsevier: 1991).
  30. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin: Springer: 1996). Crossref
  31. V. M. Danilenko and A. A. Smirnov, Fiz. Met. Metalloved., 14: 337 (1962) (in Russian).
  32. V. M. Danilenko, D. R. Rizdvyanetskii, and A. A. Smirnov, Fiz. Met. Metalloved., 15: 194 (1963) (in Russian).
  33. V. M. Danilenko, D. R. Rizdvyanetskii, and A. A. Smirnov, Fiz. Met. Metalloved., 16: 3 (1963) (in Russian).
  34. S. V. Semenovskaya, Phys. Stat. Sol. B, 64: 291 (1974). Crossref
  35. G. Inden, Physica B, 103: 82 (1981). Crossref
  36. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofiz. Noveishie Tekhnol., 25: 1303 (2003) (in Ukrainian).
  37. S. M. Bokoch and V. A. Tatarenko, Solid State Phenomena, 138: 303 (2008). Crossref
  38. J. S. Smart, Effective Field in Theories of Magnetism (Philadelphia–London: W. B. Saunders Company: 1966).
  39. M. A. Krivoglaz, Zh. Eksp. Teor. Fiz., 32: 1368 (1957) (in Russian).
  40. P. C. Clapp and S. C. Moss, Phys. Rev., 142: 418 (1966). Crossref
  41. P. C. Clapp and S. C. Moss, Phys. Rev., 171: 754 (1968). Crossref
  42. P. C. Clapp and S. C. Moss, Phys. Rev., 171: 764 (1968). Crossref
  43. V. Gerold and J. Kern, Acta Metall., 35: 393 (1987). Crossref
  44. R. V. Chepulskii and V. N. Bugaev, J. Phys.: Condens. Matter, 10: 7309 (1998). Crossref
  45. I. R. Yukhnovskii and Z. A. Gurskii, Quantum Statistical Theory of Disordered Systems (Kiev: Naukova Dumka: 1991) (in Russian).
  46. B. L. Gyorffy and G. M. Stocks, Phys. Rev. Lett., 50: 374 (1983). Crossref
  47. J. B. Staunton and B. L. Gyorffy, Phys. Rev. Lett., 69: 371 (1992). Crossref
  48. J. B. Staunton, D. D. Johnson, and F. J. Pinski, Phys. Rev. B, 50: 1450 (1994). Crossref
  49. R. A. Tahir-Kheli, Phys. Rev., 188: 1142 (1969). Crossref
  50. V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys. F: Met. Phys., 18: 1641 (1988). Crossref
  51. V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys.: Condens. Matter, 1: 2115 (1989). Crossref
  52. V. G. Vaks and V. V. Kamyshenko, J. Phys.: Condens. Matter, 3: 1351 (1991). Crossref
  53. R. Kikuchi, Phys. Rev., 81: 988 (1951). Crossref
  54. D. de Fontaine, Solid State Physics, vol. 47 (Eds. H. Ehrenreich and D. Turnbull) (New York: Academic Press: 1994), p. 33.
  55. A. Finel, Statics and Dynamics of Alloy Phase Transformations, NATO Advanced Studies Institute, Series B: Physics, vol. 319 (Eds. P. E. A Turchi and A. Gonis) (New York: Plenum: 1994), p. 495. Crossref
  56. J. M. Sanchez, V. Pierron-Bohnes, and F. Mejía-Lira, Phys. Rev. B, 51: 3429 (1995). Crossref
  57. V. I. Tokar, I. V. Masanskii, and T. A. Grishchenko, J. Phys.: Condens. Matter, 2: 10199 (1990). Crossref
  58. I. Tsatskis, Phil. Mag. Lett., 78: 403 (1998). Crossref
  59. R. V. Chepulskii, Phys. Rev. B, 69: 134431 (2004). Crossref
  60. V. N. Bugaev, H. Reichert, O. Shchyglo et al., Phys. Rev. B, 65: 180203 (2002). Crossref
  61. A. Udyansky, V. N. Bugaev, W. Schweika et al., Phys. Rev. B, 71: 140201 (2005). Crossref
  62. O. Shchyglo, V. N. Bugaev, R. Drautz et al., Phys. Rev. B, 72: 140201 (2005). Crossref
  63. V. N. Bugaev, A. Udyansky, O. Shchyglo, H. Reichert, and H. Dosch, Phys. Rev. B, 74: 024202 (2006). Crossref
  64. E. P. Wohlfarth, J. Phys. C, 2: 68 (1969). Crossref
  65. E. I. Kondorsky, Zh. Eksp. Teor. Fiz., 37: 1819 (1959) (in Russian).
  66. R. J. Weiss, Proc. Phys. Soc., 82: 281 (1963). Crossref
  67. A. Z. Men'shikov, S. K. Sidorov, and V. E. Arkhipov, Zh. Eksp. Teor. Fiz., 61: 311 (1971) (in Russian).
  68. B. R. Coles, R. H. Taylor, B. V. B. Sarkissian et al., Physica B, 86–88: 275 (1977). Crossref
  69. J. L. Moràn-Lopez and L. M. Falicov, J. Phys. C: Solid State Phys., 13: 1715 (1980). Crossref
  70. J. Urias and J. L. Moràn-Lopez, Phys. Rev. B, 26: 2669 (1982). Crossref
  71. J. M. Sanchez and C. H. Lin, Phys. Rev. B, 30: 1448 (1984). Crossref
  72. P. L. Rossiter and P. J. Lawrence, Phil. Mag. A, 49: 535 (1984). Crossref
  73. P. J. Lawrence and P. L. Rossiter, J. Phys. F: Met. Phys., 16: 543 (1986). Crossref
  74. M. C. Cadeville and J. L. Moràn-Lopez, Physics Reports, 153: 331 (1987). Crossref
  75. J. B. Staunton, D. D. Johnson, and B. L. Gyorffy, J. Appl. Phys., 61: 3693 (1987). Crossref
  76. D. D. Johnson, F. J. Pinski, and J. B. Staunton, J. Appl. Phys., 61: 3715 (1987). Crossref
  77. M. B. Taylor, B. L. Gyorffy, and C. J. Walden, J. Phys.: Condens. Matter, 3: 1575 (1991). Crossref
  78. M. B. Taylor and B. L. Gyorffy, J. Magn. Magn. Mater., 104–107: 877 (1992). Crossref
  79. M. Dubé, P. R. L. Heron, and D. G. Rancourt, J. Magn. Magn. Mater., 147: 122 (1995). Crossref
  80. M.-Z. Dang, M. Dubé, and D. G. Rancourt, J. Magn. Magn. Mater., 147: 133 (1995). Crossref
  81. M.-Z. Dang and D. G. Rancourt, Phys. Rev. B, 53: 2291 (1996). Crossref
  82. A. Z. Men'shikov and E. E. Yurchikov, Izv. Akad. Nauk SSSR. Ser. Fiz., 36: 1463 (1972) (in Russian).
  83. M. Hatherly, K. Hirakawa, R. D. Lowde et al., Proc. Phys. Soc., 84: 55 (1964). Crossref
  84. T. Maeda, H. Yamauchi, and H. Watanabe, J. Phys. Soc. Japan, 35: 1635 (1973). Crossref
  85. V. A. Tatarenko and K. L. Tsinman, Metallofizika, 14: 14 (1992) (in Russian).
  86. D. de Fontaine, Acta Metall., 23: 553 (1975). Crossref
  87. J. M. Sanchez, D. Gratias, and D. de Fontaine, Acta Crystallogr. A, 38: 214 (1982). Crossref
  88. V. N. Bugaev and R. V. Chepul'skii, Acta Crystallogr. A, 51: 456 (1995). Crossref
  89. A. A. Abrahamson, Phys. Rev., 178: 76 (1969). Crossref
  90. A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Phys. Rev. B, 76: 014420 (2007). Crossref
  91. G. Bonny, R. C. Pasianot, and L. Malerba, Modelling Simul. Mater. Sci. Eng., 17: 025010 (2009). Crossref
  92. A. G. Khachaturyan, Fiz. Tverd. Tela, 4: 2840 (1962) (in Russian).
  93. A. G. Khachaturyan, Fiz. Tverd. Tela, 9: 2861 (1967) (in Russian).
  94. H. E. Cook and D. de Fontaine, Acta Metall., 17: 915 (1969). Crossref
  95. H. E. Cook and D. de Fontaine, Acta Metall., 19: 607 (1971). Crossref
  96. T. J. Matsubara, J. Phys. Soc. Japan, 7: 270 (1952). Crossref
  97. V. N. Bugaev and V. A. Tatarenko, Interaction and Arrangement of Atoms in Interstitial Solid Solutions Based on Closed-Packed Metals (Kiev: Naukova Dumka: 1989) (in Russian).
  98. V. A. Tatarenko and V. M. Nadutov, Uspehi Fiziki Metallov, 5: 503 (2004) (in Ukrainian).
  99. S. V. Beiden and V. G. Vaks, Physics Letters A, 163: 209 (1992). Crossref
  100. M. S. Blanter, Phys. Stat. Sol. B, 181: 377 (1994). Crossref
  101. M. S. Blanter, J. Alloys and Compounds, 282: 137 (1999). Crossref
  102. M. S. Blanter, J. Alloys and Compounds, 291: 167 (1999). Crossref
  103. C. Wolverton, V. Ozolinš, and A. Zunger, Phys. Rev. B, 57: 4332 (1998). Crossref
  104. H. Reichert, V. N. Bugaev, O. Shchyglo et al., Phys. Rev. Lett., 87: 236105 (2001). Crossref
  105. W. B. Pearson, Handbook of Lattice Spacing and Structure of Metals and Alloys (New York: Pergamon Press: 1958, 1968), vols. 1, 2.
  106. J. Zarestky and C. Stassis, Phys. Rev. B, 35: 4500 (1987). Crossref
  107. R. J. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods, Phys. Rev. A, 136: 1359 (1964). Crossref
  108. S. Lefebvre, F. Bley, M. Bessiere et al., Acta Crystallogr. A, 36: 1 (1980). Crossref
  109. S. Lefebvre, F. Bley, M. Fayard, and M. Roth, Acta Metall., 29: 749 (1981). Crossref
  110. F. Bley, Z. Amilius, and S. Lefebvre, Acta Metall., 36: 1643 (1988). Crossref
  111. G. E. Ice, C. J. Sparks, A. Habenschuss, and L.B. Shaffer, Phys. Rev. Lett., 68: 863 (1992). Crossref
  112. X. Jiang, G. E. Ice, C. J. Sparks, and P. Zschack, Mat. Res. Soc. Symp. Proc., 375: 267 (1995). Crossref
  113. X. Jiang, G. E. Ice, C. J. Sparks et al., Phys. Rev. B, 54: 3211 (1996). Crossref
  114. G. E. Ice, C. J. Sparks, J. L. Robertson et al., Mat. Res. Soc. Symp. Proc., 437: 181 (1996). Crossref
  115. G. E. Ice, G. S. Painter, L. Shaffer et al., NanoStructured Materials, 7: 147 (1996). Crossref
  116. G. E. Ice, C. J. Sparks, X. Jiang, and J. L. Robertson, J. Phase Equil., 19: 529 (1998).
  117. G. E. Ice and C. J. Sparks, Annu. Rev. Mater. Sci., 29: 25 (1999). Crossref
  118. J. L. Robertson, G. E. Ice, C. J. Sparks et al., Phys. Rev. Lett., 82: 2911 (1999). Crossref
  119. P. Cenedese, F. Bley, and S. Lefebvre, Mat. Res. Soc. Symp. Proc., 21: 351 (1984). Crossref
  120. F. Livet, Acta Metall., 35: 2915 (1987). Crossref
  121. A. G. Khachaturyan, Fiz. Tverd. Tela, 9: 2594 (1967) (in Russian).
  122. H. E. Cook, J. Phys. Chem. Solids, 30: 2427 (1969). Crossref
  123. M. A. Krivoglaz and S. P. Repetskii, Fiz. Tverd. Tela, 8: 2908 (1966) (in Russian).
  124. M. M. Naumova, S. V. Semenovskaya, and Y. S. Umanskii, Fiz. Tverd. Tela, 12: 975 (1970) (in Russian).
  125. V. A. Tatarenko and T. M. Radchenko, Metallofiz. Noveishie Tekhnol., 24: 1335 (2002) (in Ukrainian).
  126. S. M. Bokoch, N. P. Kulish, V. A. Tatarenko, and T. M. Radchenko, Metallofiz. Noveishie Tekhnol., 26: 387 (2004) (in Russian).
  127. V. I. Goman'kov, I. M. Puzei, V. N. Sigaev et al., Pisma Zh. Eksp. Teor. Fiz., 13: 600 (1971) (in Russian).
  128. V. I. Goman'kov, N. I. Nogin, and E. V. Kozis, Metally, 12: 174 (1982) (in Russian).
  129. B. Schönfeld, Prog. Mater. Sci., 44: 435 (1999). Crossref
  130. H. Chen and J. B. Cohen, Acta Metall., 27: 603 (1979). Crossref
  131. T. M. Radchenko and V. A. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008) (in Ukrainian). Crossref
  132. F. Ono, H. Maeta, and L. Bang, J. Magn. Magn. Mater., 140–144: 247 (1995). Crossref
  133. Y. Tsunoda, L. Hao, S. Shimomura et al., Phys. Rev. B, 78: 094105 (2008). Crossref
  134. I. B. Ramsteiner, O. Shchyglo, M. Mezger et al., Acta Mater., 56: 1298 (2008). Crossref
  135. C. J. Sparks, G. E. Ice, X. Jiang, and P. Zschack, Applications of Synchrotron Radiation Techniques to Materials Science II, vol. 375 (Eds. L. J. Terminello, N. D. Shinn, G. E. Ice, K. L. D'Amico, and D. L. Perry) (Pittsburgh: PA, MRS: 1995), p. 213.
  136. G. E. Ice, C. J. Sparks, and L. B. Shaffer, Resonant Anomalous X-Ray Scattering (Eds. G. Materlik, C.J. Sparks, and K. Fischer) (Amsterdam: North-Holland: 1994), p. 265.
  137. G. E. Ice, C. J. Sparks, L. B. Shaffer, and P. Zschack, Alloy Modeling and Design (Eds. G. M. Stocks and P. E. A. Turchi) (Warrendale: PA, TMS Mineral Metals and Materials: 1994), p. 215.
Cited By (2)
  1. S. M. Bokoch, V. A. Tatarenko and I. V. Vernyhora, Usp. Fiz. Met. 13, 269 (2012).
  2. I. V. Vernyhora, V. A. Tatarenko and S. M. Bokoch, ISRN Thermodynamics 2012, 1 (2012).