Interplay of Magnetic and Structural Properties of F.C.C.-Ni–Fe Alloys: Study of Statistical Thermodynamics and Kinetics by Means of Methods of Computer Simulation

I. V. Vernyhora$^{1,2}$, S. M. Bokoch$^{3,4}$, V. A. Tatarenko$^{2}$

$^1$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$Laboratoire Jean Kuntzmann, UMR 5224 CNRS, Tour IRMA, 51 rue des Mathematiques, B.P. 53, 38041 Grenoble Cedex 9, France
$^4$Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5—7, 10117 Berlin, Germany

Received: 05.03.2010; final version - 20.09.2010. Download: PDF

In a given review, focus is on those certain results of experimental and theoretical investigations of substitutional f.c.c.-Ni—Fe alloys, which concern the coexistence and interplay of atomic (‘chemical’) and magnetic orders. An attempt is performed to relate the symmetry—energy and configuration—entropy characteristics of spatial distribution of atomic subsystem of f.c.c.-Ni—Fe alloys with their magnetism (ferro-, ferri- and/or antiferromagnetic orders) and statistical interatomic correlations (of either short-range or long-range extents). A number of results of investigation by theoretical methods of equilibrium statistical thermodynamics of magnetic alloys are considered in details. In particular, the phase diagram, critical-point effects and phase transitions, etc. are analysed by means of the self-consistent-field and mean-field methods, the cluster-variation method, the Monte Carlo method, and ab initio calculations. Among the methods for investigation of kinetics of order—disorder and order— order phase transformations in magnetic alloys, the Onsager approach, the phase-field method, the kinetic Monte Carlo method, and the molecular dynamics method are critically considered. As shown, a consistent estimation of physical properties of f.c.c.-Ni—Fe alloys by the use of computational techniques and simulation is only possible by means of simultaneous and self-consistent study of atomic and magnetic subsystems with their significant mutual influence.

Keywords: f.c.c.-Ni–Fe alloys, order–disorder phase transformation, magnetic ordering, invar effect, computer modeling methods, self-consistent field approach, cluster variation method, Monte-Carlo method, ab initio calculation, phase field method, Onsager method, Monte-Carlo kinetic method, molecular dynamics.

PACS: 05.10.Ln, 61.72.Bb, 64.60.De, 75.30.-m, 75.40.Mg, 75.50.Bb, 81.30.-t

DOI: https://doi.org/10.15407/ufm.11.03.313

Citation: I. V. Vernyhora, S. M. Bokoch, and V. A. Tatarenko, Interplay of Magnetic and Structural Properties of F.C.C.-Ni–Fe Alloys: Study of Statistical Thermodynamics and Kinetics by Means of Methods of Computer Simulation, Usp. Fiz. Met., 11, No. 3: 313—368 (2010) (in Ukrainian), doi: 10.15407/ufm.11.03.313


References (167)  
  1. A. A. Smirnov, Molekulyarno-kineticheskaya teoriya metallov (Moskva: Nauka: 1966).
  2. A. A. Smirnov, Obobshchennaya teoriya uporyadocheniya splavov (Kiev: Naukova dumka: 1986).
  3. F. C. Nix and W. Shockley, Rev. Mod. Phys., 10, No. 1: 1 (1938). Crossref
  4. A. G. Khachaturyan, Progr. Mat. Sci., 22: 1 (1978). Crossref
  5. A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley & Sons: 1983); A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: Dover: 2008).
  6. M. C. Cadeville and J. L. Moran-Lopez, Phys. Rep., 153, No. 6: 331 (1987). Crossref
  7. M. A. Krivoglaz, Diffuse Scattering of X-Rays and Neutrons–Fluctuations in Solids (Berlin: Springer: 1996); M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin: Springer: 1996). Crossref
  8. B. Sshönfeld, Progr. Mat. Sci., 44: 435 (1999).
  9. Fizicheskoe metallovedenie: 3 volumes (Red. R. U. Kan, P. Khaazen) (Moskva: Metallurgiya: 1987), t. 1.
  10. G. Beranger, F. Duffault, J. Morlet, and J.-F. Tiers, Les alliages de Fer et de Nickel. Cent ans apres le decouverte de l'Invar... (Londres–Paris–New York: Lavoisier: Tecnique & Documentation: 1996).
  11. E. F. Wasserman, J. Magn. Magn. Mater., 100, Nos. 1–3: 346 (1991). Crossref
  12. E. F. Wassermann, The Invar Effect: a Centennial Symposium (Ed. J. Wittenauer) (The Minerals, Metals & Materials Society: 1997), p. 51–62.
  13. A. P. Miodownik, Physics and Application of Invar Alloys. Honda Memorial Series on Material Science. No. 3 (Eds. H. Sato et al.) (Tokyo: Maruzen Company, Ltd.: 1978), chapt. 12, p. 288–310.
  14. Binary Alloy Phase Diagrams. Vol. 1 (Metals Park, CA: ASM: 1986).
  15. D. G. Morris, G. T. Brown, R. C. Piller, and R. E. Smallman, Acta Metall., 24, No. 1: 21 (1976). Crossref
  16. H. Ferjani, F. Bley, and Y. Calvayrac, J. Phys. Colloq. (France), 38, No. 12, suppl.: C7 (1977).
  17. S. Lefebvre, F. Bley, M. Fayard, and M. Roth, Acta Metall., 29, No. 5: 749 (1981). Crossref
  18. S. Lefebvre, F. Bley, M. Bessiere et al., Acta Cryst. A, 36, No. 1: 1 (1980). Crossref
  19. P. Cenedese, F. Bley, and S. Lefebvre, Mat. Res. Soc. Symp. Proc., 21: 351 (1984). Crossref
  20. F. Bley, Z. Amilius, and S. Lefebvre, Acta Metall., 36, No. 7: 1643 (1988). Crossref
  21. G. E. Ice, C. J. Sparks, A. Habenschuss, and L. B. Shaffer, Phys. Rev. Lett., 68, No. 6: 863 (1992). Crossref
  22. X. Jiang, G. E. Sparks, L. Robertson, and P. Zschack, Phys. Rev. B, 54, No. 5: 3211 (1996). Crossref
  23. G. E. Ice, G. S. Painter, L. Shaffer et al., NanoStr. Mater., 7, Nos. 1–2: 147 (1996).
  24. J. L. Robertson, G. E. Ice, C. J. Sparks et al., Phys. Rev. Lett., 82, No. 14: 2911 (1999). Crossref
  25. G. E. Ice and C. J. Sparks, Annu. Rev. Mater. Sci., 29: 25 (1999). Crossref
  26. J. K. van Deen and F. van der Woude, Acta Metall., 29, No. 7: 1255 (1981) Crossref
  27. A. Z. Men'shikov, E. E. Yurchikov, Izvest. Akad. nauk SSSR. Ser. fiz., 36, No. 7: 1463 (1972).
  28. C. E. Johnson, M. S. Ridout, and T. E. Cranshaw, Proc. Phys, Soc., 81, No. 6: 1079 (1963). Crossref
  29. R. J. Taunt and B. Ralph, Phys. Stat. Sol. (a), 24, No. 1: 207 (1974). Crossref
  30. T. G. Kollie and C. R. Brooks, Phys. Stat. Sol. (a), 19, No. 2: 545 (1973). Crossref
  31. A. J. Panas and D. Panas, High Temperatures–High Pressures, 38, No. 1: 63 (2009).
  32. J. Crangle and G. C. Hallam, Proc. R. Soc. London. A, 272, No. 1348: 119 (1963). Crossref
  33. R. J. Wakelin and E. L. Yates, Proc. Phys. Soc. B, 66, No. 3: 221 (1953). Crossref
  34. D. W. Heermann, Computer Simulation Methods (Berlin: Springer-Verlag: 1990). Crossref
  35. K. Binder and D. Landau, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge: Cambridge University Press: 2000).
  36. P. K. MacKeown, Stochastic Simulations in Physics (Singapore: Springer-Verlag: 1997).
  37. S. V. Vonsovskii, Magnetizm (Moskva: Nauka: 1971).
  38. D. C. Mattis, The Theory of Magnetism. Springer Series in Solid-State Sciences. Vol. 17. No. 55 (Berlin–New York: Springer-Verlag: 1981).
  39. C.-W. Yang and J. I. Goldstein, The Invar Effect: a Centennial Symposium (Ed. J. Wittenauer) (The Minerals, Metals & Materials Society: 1997), p. 137–146.
  40. P. R. Munroe and M. Hatherly, Scr. Metall. Mater., 32, No. 1: 93 (1995). Crossref
  41. E. F. Wasserman, Ferromagnetic Materials. Vol. 5 (Eds. K. H. J. Buschow and E. P. Wohlfarth) (Elsevier Science Publishers B.V.: 1990), p. 237–322.
  42. D. D. Johnson and W. A. Shelton, The Invar Effect: a Centennial Symposium (Ed. J. Wittenauer) (The Minerals, Metals & Materials Society: 1997), p. 63–74.
  43. X. Zheng, D. G. Cahill, and J. C. Zhao, Acta Mater., 58, No. 4: 1236 (2010). Crossref
  44. M.-Z. Dang and D. G. Rancourt, Phys. Rev. B, 53: 2291 (1996). Crossref
  45. S. Bokoch and V. Tatarenko, Solid State Phenom., 138: 303 (2008). Crossref
  46. M. Schroter, H. Ebert, H. Akai et al., Phys. Rev. B, 52: 188 (1995). Crossref
  47. E. Z. Valiev, Uspekhi Fiz. Nauk, 161, No. 8: 87 (1991). Crossref
  48. R. M. Bozorth, Rev. Mod. Phys., 19, No. 1: 29 (1947); ibidem, 25, No. 1: 42 (1953).
  49. A. T. English and G. Y. Chin, J. Appl. Phys, 38, No. 3: 1183 (1967). Crossref
  50. M. van Shilfgaarde, I. A. Abrikosov, and B. Johansson, Nature, 400, No. 6739: 46 (1999). Crossref
  51. R. J. Weiss, Proc. Phys. Soc. A, 82, No. 2: 281 (1963). Crossref
  52. D. J. Kim, S. Fukumoto, T. Kizaki et al., The Invar Effect: a Centennial Symposium (Ed. J. Wittenauer) (The Minerals, Metals & Materials Society: 1997), p. 75–86.
  53. Y. Chen, S. Iwata, and T. Mohri, Rare Metals, 25, No. 5: 437 (2006). Crossref
  54. T. Mohri and Y. Chen, J. Alloy Compd., 383, Nos. 1–2: 23 (2004). Crossref
  55. T. Mohri, Y. Chen, and Y. Jufuku, CALPHAD, 33, No. 1: 244 (2009). Crossref
  56. Yu. N. Mikhailov, S. F. Dubinin, FTT, 46, No. 12: 2113 (2004).
  57. G. Cassiamani, J. De Keyzer, R. Fezzo et al., Intermetallics, 14, Nos. 10–11: 1312 (2006).
  58. J. Orehotsky, J. B. Sousa, and M. F. Pinheiro, J. Appl. Phys., 53, No. 11: 7939 (1982). Crossref
  59. J. W. Drijver, F. van der Woude, and S. Radelaar, Phys. Rev. Lett., 34, No. 16: 1026 (1975); idem, Phys. Rev. B, 16, No. 3: 985 (1977). Crossref
  60. T. E. Cranshaw, J. Phys. F: Met. Phys., 17, No. 4: 967 (1987). Crossref
  61. P.Y. Li, H. M. Lu, Z. H. Cao et al., Appl. Phys. Lett., 94, No. 21: 213112 (2009). Crossref
  62. K. Kadau, M. Gruner, P. Entel, and M. Kreth, Phase Trans., 76, No. 4–5: 355 (2003). Crossref
  63. X. Y. Qin, J. G. Kim, and J. S. Lee, NanoStr. Mat., 11, No. 2: 259 (1999).
  64. G. W. Qin, W. L. Pei, Y. P. Ren et al., J. Magn. Magn. Mater., 321, No. 24: 4057 (2009). Crossref
  65. Y. Liu, X. Y. Qin, L. Wang, and M. X. Zhang, Chin. Phys. Lett., 20, No. 1: 99 (2003). Crossref
  66. R. F. Willis and N. Janke-Gilman, Europhys. Lett., 69, No. 3: 411 (2005). Crossref
  67. J. W. Cable and E. O. Wollan, Phys. Rev. B, 7, No. 5: 2005 (1973). Crossref
  68. G. E. Low and M. F. Collins, J. Appl. Phys., 34, No. 4: 1195 (1963). Crossref
  69. R. A. Reck, Phys. Rev. B, 9, No. 5: 2381 (1974). Crossref
  70. E. P. Wohlfarth, Phys. Lett. A, 28, No. 8: 569 (1969). Crossref
  71. W. F. Shlosser, J. Phys. Chem. Solids, 32, No. 5: 939 (1971). Crossref
  72. J. Kanamori, J. Phys. Colloq. (France), 35, No. C4: 131 (1974).
  73. C. G. Shull and M. K. Wilkinson, Phys. Rev., 97, No. 2: 304 (1955). Crossref
  74. Ferromagnetic Materials: a Handbook on the Properties of Magnetically Ordered Substances. Vol. 1 (Ed. E. P. Wohlfarth) (North-Holland Publishing Company: 1980).
  75. C. S. Wang, B. M Klein, and H. Krakauer, Phys. Rev. Lett., 54, No. 16: 1852 (1985). Crossref
  76. E. I. Kondorsky and V. L. Sedov, J. Appl. Phys., 31, No. 5: S331 (1960). Crossref
  77. S. C. Abrahams, L. Guttman, and J. S. Kasper, Phys. Rev., 127, No. 6: 2052 (1962). Crossref
  78. K. P. Belov, Magnitnye prevrashcheniya (Moskva: Fizmatgiz: 1959).
  79. G. F. Bolling, A. Arrott, and R. H. Richman, Phys. Stat. Sol. (b), 26, No. 2: 743 (1968). Crossref
  80. H. Asano, J. Phys. Soc. Jpn., 27: 542 (1969). Crossref
  81. J. G. Dash, B. D. Dunlap, and D. G. Howard, Phys. Rev., 141, No. 1: 376 (1966). Crossref
  82. T. M. Radchenko, V. A. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008). Crossref
  83. R. M. Bozorth and J. G. Walker, Phys. Rev., 89, No. 3: 624 (1953). Crossref
  84. V. Yu. Bodryakov, A. A. Povzner, Zhurn. tekhn. fiz., 74, No. 2: 66 (2004); ibidem, 77, No. 2: 65 (2007).
  85. V. Yu. Bodryakov, Zhurn. tekhn. fiz., 77, No. 8: 54 (2007); ibidem, 77, No. 12: 38 (2007).
  86. G. Inden, Physica B, 103, No. 1: 82 (1981). Crossref
  87. R. A. Tahir-Kheli and T. Kawasaki, J. Phys. C: Solid State Phys., 10, No. 12: 2207 (1977). Crossref
  88. J. L. Moran-Lopez and L. M. Falicov, Solid State Commun., 31, No. 5: 325 (1979). Crossref
  89. J. L. Moran-Lopez and L. M. Falicov, J. Phys. C: Solid State Phys., 13, No. 9: 1715 (1980). Crossref
  90. F. Mejia-Lira, J. Urias, and J. L. Moran-Lopez, Phys. Rev. B, 24, No. 9: 5270 (1981). Crossref
  91. J. Urias and J. L. Moran-Lopez, Phys. Rev. B, 26, No. 5: 2669 (1982). Crossref
  92. B. Dunweg and K. Binder, Phys. Rev. B, 36, No. 13: 6935 (1987). Crossref
  93. M. B. Taylor, B. L. Gyorffy, and C. J. Walden, J. Phys.: Condens. Matter, 3, No. 3: 1575 (1991). Crossref
  94. M. B. Taylor and B. L. Gyorffy, J. Magn. Magn. Mater., 104–107, No. 2: 877 (1992). Crossref
  95. V. A. Tatarenko, T. M. Radchenko, V. M. Nadutov, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003).
  96. V. A. Tatarenko and T. M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003). Crossref
  97. D. G. Rancourt, M. Dube, and P. R. L. Heron, J. Magn. Magn. Mater., 125, Nos. 1–2: 39 (1993); ibidem, 147, Nos. 1–2: 122 (1995).
  98. F. Brouers and A. V. Vedyaev, Solid State Commun., 9, No. 17: 1521 (1971). Crossref
  99. S. F. Dubinin, S. K. Sidorov, and E. Z. Valiev, Phys. Stat. Sol. (b), 46, No. 1: 337 (1971). Crossref
  100. J. B. Muller and J. Hesse, Z. Phys. B: Cond. Mat., 54: 35 (1983). Crossref
  101. S. V. Semenovskaya, Phys. Stat. Sol. (b), 64, No. 1: 291 (1974). Crossref
  102. S. V. Semenovskaya, Phys. Stat. Sol. (b), 64, No. 2: 627 (1974). Crossref
  103. P. C. Clapp and S. C. Moss, Phys. Rev., 142, No. 2: 418 (1966); ibidem, 171, No. 3: 754 (1968); ibidem, 171, No. 3: 764 (1968).
  104. R. Kikuchi, Phys. Rev., 81, No. 6: 988 (1951); idem, J. Chem. Phys., 60, No. 3: 1071 (1974). Crossref
  105. J. Kirkwood, J. Chem. Phys., 6, No. 2: 70 (1938). Crossref
  106. H. A. Kramers and G. H. Wannier, Phys. Rev., 60, No. 3: 252 (1941). Crossref
  107. J. M. Sanchez and D. de Fontaine, Phys. Rev. B, 21, No. 1: 216 (1980); ibidem, 25, No. 3: 1759 (1982).
  108. J. M. Sanchez and C. H. Lin, Phys. Rev. B, 30, No. 3: 1448 (1984). Crossref
  109. G. Cacciamani, Y. A. Chang, G. Grimvall et al., CALPHAD, 21, No. 2: 219 (1997). Crossref
  110. T. Horiuchi, M. Igarashi, F. Abe, and T. Mohri, CALPHAD, 26, No. 4: 591 (2002). Crossref
  111. T. Mohri, J. of Phase Equilibria and Diffusion, 28, No. 1: 72 (2007). Crossref
  112. T. Mohri, T. Morita, N. Kiyokane, and H. Ishii, J. of Phase Equilibria and Diffusion, 30, No. 5: 553 (2009). Crossref
  113. T. Mohri, Int. J. Mater. Res., 100, No. 3: 301 (2009). Crossref
  114. P. J. Lawrence and P. L. Rossiter, J. Phys. F: Met. Phys., 16, No. 5: 543 (1986). Crossref
  115. P. L. Rossiter and P. J. Lawrence, Phil. Mag. A, 49, No. 4: 535 (1984). Crossref
  116. P. Cenedese, A. Marty, and Y. Calvayrac, J. Phys. Colloq. (France), 50: 2193 (1989). Crossref
  117. V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys. F: Met. Phys., 18, No. 8: 1641 (1988). Crossref
  118. V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys.: Condens. Matter, 1, No. 11: 2115 (1989). Crossref
  119. V. G. Vaks and V. V. Kamyshenko, J. Phys.: Condens. Matter, 3, No. 10: 1351 (1991). Crossref
  120. N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Teller, J. Chem. Phys., 21, No. 6: 1087 (1953). Crossref
  121. M.-Z. Dang and D. G. Rancourt, Phys. Rev. B, 53, No. 5: 2291 (1996). Crossref
  122. K. Lagarec and D. G. Rancourt, Phys. Rev. B, 62, No. 2: 2291 (1996).
  123. I. V. Vernyhora, D. Ledue, R. Patte, and H. Zapolsky, J. Magn. Magn. Mater., 322, No. 17: 2465 (2010). Crossref
  124. M. B. Taylor and B. L. Gyorffy, J. Phys.: Condens. Matter, 3, No. 26: 4971 (1991). Crossref
  125. P. C. Gehlen and J. B. Cohen, Phys. Rev., 139, No. 3A: 844 (1965). Crossref
  126. S. M. Bokoch, I. V. Vernyhora, and V. A. Tatarenko (to be published).
  127. K. Takahashi, Z. Phys. B: Cond. Matter, 71, 205 (1988). Crossref
  128. M. E. Gruner, R. Meyer, and P. Entel, Eur. Phys. J. B, 2, No. 1: 107 (1998). Crossref
  129. F. Livet, Acta Metall., 35, No. 12: 2915 (1987). Crossref
  130. P. Hohenberg and W. Kohn, Phys. Rev., 136, No. 3B: 864 (1964). Crossref
  131. W. Kohn and L. J. Sham, Phys. Rev., 140, No. 4A: 1133 (1965). Crossref
  132. A. V. Ruban and I. A. Abrikosov, Rep. Prog. Phys., 71, No. 4: 046501 (2008). Crossref
  133. J. W. D. Connoly and A. R. Williams, Phys. Rev. B, 27, No. 8: 5169 (1983). Crossref
  134. B. L. Gyorffy and G. M. Stocks, Phys. Rev. Lett., 50, No. 5: 374 (1983). Crossref
  135. A. V. Ruban, S. Shallcross, S. I. Simak, and H. L. Skriver, Phys. Rev. B, 70, No. 12: 125115 (2004). Crossref
  136. A. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Magn. Magn. Mater., 67, No. 1: 65 (1987). Crossref
  137. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Acta Mater., 53, No. 15: 4029 (2005). Crossref
  138. A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Phys. Rev. B, 76, No. 1: 014420 (2007). Crossref
  139. A. V. Ruban, M. I. Katsnelson, W. Olovsson et al., Phys. Rev. B, 71, No. 5: 054402 (2005). Crossref
  140. I. A. Abrikosov, A. E. Kissavos, F. Liot et al., Phys. Rev. B, 76, No. 1: 014434 (2007). Crossref
  141. J. Kudrnovsky, I. Turek, A. Pasturel et al., Phys. Rev. B, 50, No. 13: 9603 (1994). Crossref
  142. M. Pajda, J. Kudrnovsky, I. Turek et al., Phys. Rev. B, 64, No. 17: 174402 (2001). Crossref
  143. J. Kudrnovsky, V. Drchal, and P. Bruno, Phys. Rev. B, 77, No. 22: 224422 (2008). Crossref
  144. J. B. Staunton, D. D. Johnson, and B. L. Gyorffy, J. Appl. Phys., 61, No. 8: 3693 (1987). Crossref
  145. J. B. Staunton, D. D. Johnson, B. L. Gyorffy, and C. Walden, Phil. Mag. B, 61, No. 4: 773 (1990). Crossref
  146. M. E. Gruner, W. A. Adagbo, A. T. Zayak et al., Phys. Rev. B, 81, No. 6: 064109 (2010). Crossref
  147. L.-Q. Chen and A. G. Khachaturyan, Acta Metall. Mater., 39, No. 11: 2533 (1991). Crossref
  148. L.-Q. Chen, Phys. Rev. B, 49, No. 6: 3791 (1994). Crossref
  149. R. Poduri and L.-Q. Chen, Acta Mater., 45, No. 1: 245 (1997); ibidem, 46, No. 5: 1719 (1998); ibidem, 46, No. 11: 3915 (1998). Crossref
  150. I.V. Vernyhora, D. Ledue, , R. Patte, H. Zapolsky, J. Magn. Magn. Mater., 322, 2465 (2010). Crossref
  151. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  152. M. J. Liang, Z. Cheng, J. X. Zhang, and Y. X. Wang, Trans. Nonferrous Met. Soc. China, 18: 59 (2008). Crossref
  153. Thermodynamics, Microstructures and Plasticity. NATO Science Series (Eds. A. Finel, D. Maziere, and M. Veron) (Dordrecht–Boston–London: Kluwer Academic Publishers: 2003).
  154. T. Koyama, Sci. Technol. Adv. Mater., 9, No. 1: 013006 (2008). Crossref
  155. A. F. Ferreira, A. J. da Silva, and J. A. de Castro, Mater. Res., 9, No. 4: 349 (2006). Crossref
  156. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press: 2002).
  157. L. Bernard, S. Choudhury, J. Tucker et al., http://matmodel.engr.wisc.edu/Nuggets/RIS.html
  158. C. Domain, C. S. Becquart, and L. Malerba, J. Nucl. Mater., 335, No. 1: 121 (2004). Crossref
  159. M. Grujicic and P. Dang, Mater. Sci. Eng. A, 201, Nos. 1–2: 194 (1995). Crossref
  160. K. Kadau, P. Entel, and P. S. Lomdahl, Comp. Phys. Commun., 147, Nos. 1–2: 126 (2002). Crossref
  161. H. P. Cheng and D. E. Ellis, Phys. Rev. B, 39, No. 17: 12469 (1989). Crossref
  162. L. E. Kar'kina, I. N. Kar'kin, and Yu. N. Gornostyrev, Phys. Met. Metallogr., 101, No. 2: 130 (2006). Crossref
  163. Y. J. Lu, M. Chen, H. Yahg, and D. Q. Yu, Acta Mat., 56, No. 15: 4022 (2008). Crossref
  164. I. Mastorakos, N. Le, M. Zeine et al., 2010 MRS Spring Meeting. Symposia Z/BB (2010).
  165. D. J. Bacon and Yu. N. Osetsky, JOM, 59, No. 4: 40 (2007). Crossref
  166. J.-H. Shim, H.-J. Lee, and B. D. Wirth, J. Nucl. Mater., 351, Nos. 1–3: 56 (2006). Crossref
  167. R. E. Stoller, NESLS Summer Seminar Series 2007 (Oak-Ridge, USA: Oak-Ridge National Laboratory, USA: 2007).
Cited By (1)
  1. I. V. Vernyhora, V. A. Tatarenko and S. M. Bokoch, ISRN Thermodynamics 2012, 1 (2012).