Fe–Ni Alloys at High Pressures and Temperatures: Statistical Thermodynamics and Kinetics of the $L1_{2}$ or $D0_{19}$ Atomic Order

T. M. Radchenko, V. A. Tatarenko

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 04.03.2008. Download: PDF

Crystal structures of Fe—Ni alloys in extreme conditions (particularly, such as a state of the Earth’s interior core) at high pressure, $p$, and temperature, $T$, are reviewed. A role of magnetic effects in atomic ordering, interplay between the atomic and magnetic orders, and pressure effects on magnetic properties of Fe—Ni alloys (Curie temperature, $T_{C}$}, ferromagnetic—antiferromagnetic phase transition, Invar effect) are analysed. Statistical-thermodynamic model of f.c.c. substitutional alloys with both magnetic components (within the framework of which, energy parameters of their exchange interactions and ‘interchange’ energy are determined) as well as models of kinetics of a relaxation of both shortrange and long-range atomic orders of Permalloy at zero pressure are considered with use of the self-consistent field approximation. External pressure is taken into account in statistical-thermodynamic and kinetic models of L1$_{2}$- or D0$_{19}$-type orderings for two cases, namely when dependences of volume of a sample of an alloy, $V$, on the long-range order parameter, $\eta$, and composition are weak or essential, i.e. when it is possible or it is impossible to neglect them, respectively. If this $V$ weakly depends on $\eta$ and composition, pressure does not influence $\Delta\eta|T_{K}$–jump of the long-range order parameter. Pressure only displaces a point of the order—disorder phase transformation, $T_{K}$, aside high or low values of $T$, depending on signs of those parameters, which characterize model. The $T_{K}(p)$ and $\eta(p)$ dependences can be nonmonotonic, i.e. occurrence of two different points of order—disorder phase transformations appears possibly. If $V$ essentially depends on $\eta$ and composition, $\Delta\eta|T_{K}$ is not a constant and can increase or decrease with increase of $p$. Dependence $T_{K}(p)$ is almost linear or nonlinear at low or high values of $p$, respectively. Pressure can promote atomic ordering or suppress it, change a kind of phase transition and symmetry of a crystal lattice of an alloy because of its transformation from tetragonal structure into rhombohedral one. The experimental data concerning characteristics of a (micro)heterogeneous structure of Fe—Ni Invar are discussed, and possible theoretical approaches for an explanation of their discrepancy are elucidated.

Keywords: Fe–Ni alloys, order–disorder phase transition, pressure influence on atomic ordering, kinetics of order relaxation, magnetic interaction of substitutional atoms, heterogeneity of invar, structure and properties of Earth core.

PACS: 61.50.Ks, 62.50.-p, 64.60.Cn, 75.50.Bb, 81.30.-t, 91.35.-x, 91.67.gb

DOI: https://doi.org/10.15407/ufm.09.01.001

Citation: T. M. Radchenko and V. A. Tatarenko, Fe–Ni Alloys at High Pressures and Temperatures: Statistical Thermodynamics and Kinetics of the $L1_{2}$ or $D0_{19}$ Atomic Order, Usp. Fiz. Met., 9, No. 1: 1—170 (2008) (in Ukrainian), doi: 10.15407/ufm.09.01.001


References (373)  
  1. S. V. Starenchenko, E. V. Kozlov, V. A. Starenchenko, Zakonomernosti termicheskogo fazovogo perekhoda poryadok–besporyadok v splavakh so sverkhstrukturami L12, L12(M), L12(MM), D1a (Tomsk: NTL: 2007).
  2. A. A. Smirnov, Uporyadochenie splavov pri vysokikh davleniyakh, Metally, elektrony, reshetka (Kiev: Naukova dumka: 1975), pp. 28–47.
  3. F. Ch. Niks, V. Shokli, Prevrashcheniya v splavakh, Uspekhi Fiz. Nauk., 20, No. 3: 344–409 (1938).
  4. F. Ch. Niks, V. Shokli, Prevrashcheniya v splavakh, Uspekhi Fiz. Nauk., 20, No. 4: 536–586 (1938). Crossref
  5. M. A. Krivoglaz, A. A. Smirnov, Teoriya uporyadochivayushchikhsya splavov (Moskva: Fizmatgiz: 1958).
  6. T. Muto, Yu. Takagi, Teoriya yavleniy uporyadocheniya v splavakh (Moskva: Inostr. lit.: 1959).
  7. A. A. Smirnov, Molekulyarno-kineticheskaya teoriya metallov (Moskva: Nauka: 1966).
  8. A. A. Smirnov, Obobshchennaya teoriya uporyadocheniya splavov (Kiev: Naukova dumka: 1986).
  9. A. A. Smirnov, Teoriya vakansiy v metallakh i splavakh i ee primenenie k splavam vychitaniya (Kiev: Naukova dumka: 1993).
  10. A. Gin'e, Neodnorodnye metallicheskie tverdye rastvory (Moskva: IL: 1962).
  11. V. Kester, Blizhnee uporyadochenie i blizhnee rassloenie v tverdykh rastvorakh, Tonkaya struktura tverdykh rastvorov (Moskva: Metallurgiya: 1968), pp. 196–220.
  12. V. I. Iveronova, A. A. Katsnel'son, Blizhniy poryadok v tverdykh rastvorakh (Moskva: Nauka: 1977).
  13. A. G. Khachaturyan, Teoriya fazovykh prevrashcheniy i struktura tverdykh rastvorov (Moskva: Nauka: 1974).
  14. A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley & Sons Inc.: 1983).
  15. Yu. A. Skakov, A. M. Glezer, Uporyadochenie i vnutrifazovye prevrashcheniya, Itogi nauki i tekhniki. Metallovedenie i termicheskaya obrabotka (Moskva: VINITI: 1975), ss. 5–72.
  16. N. M. Matveeva, E. V. Kozlov, Uporyadochennye fazy v metallicheskikh sistemakh (Moskva: Nauka: 1989).
  17. E. V. Kozlov, V. M. Dementyev, N. M. Kormin, D. M. Shtern, Struktury i stabil'nost' uporyadochennykh faz (Tomsk: Izd-vo Tomskogo universiteta: 1994).
  18. F. Reynaud, Order–Disorder Transition in Substitutional Solid Solution, Phys. Stat. Sol. A, 72: 11–60 (1982). Crossref
  19. L. E. Tanner and H. J. Leamy, The Microstructure of Order–Disorder Transitions, Order–Disorder Transformation in Alloys (Ed. H. Warlimont) (Berlin: 1974), pp. 180–239.
  20. A. I. Gusev, A. A. Rempel', Termodinamika strukturnykh vakansiy v nestekhiometricheskikh fazakh vnedreniya (Sverdlovsk: UNTs AN SSSR: 1987).
  21. A. I. Gusev, A. A. Rempel', Strukturnye fazovye perekhody v nestekhiometricheskikh soedineniyakh (Moskva: Nauka: 1988).
  22. A. I. Potekaev, I. I. Naumov, V. V. Kulagina V. N. Udodov, O.I. Velikokhatnyy, S. V. Eremeev, Estestvennye dlinnoperiodicheskie nanostruktury (Tomsk: NTL: 2002).
  23. A. A. Bondar, V. M. Velikanova, V. M. Danilenko et al., Stabil'nost' faz i fazovye ravnovesiya v splavakh perekhodnykh metallov (Kiev: Naukova dumka: 1991).
  24. V. N. Bugaev, V. A. Tatarenko, Vzaimodeystvie i raspredelenie atomov v splavakh vnedreniya na osnove plotnoupakovannykh metallov (Kiev: Naukova dumka: 1989).
  25. V. A. Tatarenko, T. M. Radchenko, Pryami y nepryami metodi analizu mizhatomnoi vzaiemodii ta kinetiki relaksatsii bliz'kogo poryadku v shchil'no vpakovanikh tverdikh rozchinakh zamishchennya (vtilennya), Uspehi Fiziki Metallov, 3, No. 2: 111–236 (2002).
  26. V. G. Vaks, Kinetics of Phase Separation and Ordering in Alloys, Physics Reports, 391, Nos. 3–6: 157–242 (2004). Crossref
  27. L. Guttman, Order–Disorder Phenomenon in Metals, Solid State Physics (Eds. F. Seitz and D. Turnbull) (New York: Academic Press Inc.: 1956), p. 145.
  28. S. Ogawa, M. Hirabayashi, D. Watanabe, and H. Iwasaki, Long-Period Ordered Alloys (Tokyo: Agne Gijutsu Center Inc.: 1997).
  29. O. L. Anderson, The Earth's Core and the Phase Diagram of Iron, Phil. Trans. Roy. Soc. Lond. A, 306: 21–35 (1982). Crossref
  30. L. Vočadlo and D. Dobson, The Earth's Deep Interior: Advances in Theory and Experiment, Phil. Trans. Roy. Soc. Lond. A, 357: 3335–3357 (1999). Crossref
  31. From Crust to Core. Geomaterials Research at Bayerisches Geoinstitut (Ed. F. Seifert) (Bayreuth: Druckerei Heinz Neubert Gmbh: 2004).
  32. W. F. McDonough, Compositional Model for the Earth's Core, The Mantle and Core (Ed. R. Carlson) (Oxford: Elsevier/Pergamon: 2003), pp. 547–568.
  33. V. F. Anisichkin, Udarno-volnovye dannye kak dokazatel'stvo prisutstviya ugleroda v yadre i nizhney mantii Zemli, FGV, 36, No. 4: 108–114 (2000).
  34. S. M. Karakhanov, S. A. Bordzilovskiy, A. I. Turkin, V. F. Anisichkin, Izmerenie skorosti zvuka v smesyakh zheleza s almazom, Trudy mezhdunarodnoy konferentsii 'Shock Waves in Condensed Matter' (Sankt-Peterburg: 2002), cc. 127–129.
  35. Information at http://www.sbras.ru/win/sbras/rep/rep2002/t1-2/50/50.htm.
  36. A. K. Borisova, S. S. Gratsianova, S. I. Olevskiy et al., Pretsizionnye splavy s osobymi svoystvami teplovogo rasshireniya i uprugosti (Moskva: Izd-vo Standartov: 1972).
  37. B. G. Lifshits, V. S. Krapotkin, Ya. L. Linetskiy, Fizicheskie svoystva metallov i splavov (Metallurgiya: Moskva: 1980).
  38. Pretsizionnye splavy (Red. B. V. Molotilov) (Nauka: Moskva: 1983).
  39. A. I. Zakharov, Fizika pretsizionnykh splavov s osobymi teplovymi svoystvami (Metallurgiya: Moskva: 1986).
  40. B. V. Molotilov, V. I. Matorin, Printsipy konstruirovaniya novykh funktsional'nykh materialov, Stal', No. 8: 92–94 (2004).
  41. L. Stixrude and J. M. Brown, The Earth's Core, Mineralogy. Mineralogical Society of America (Washington, DC: 1998), pp. 261–282.
  42. R. J. Hemley and H. K. Mao, In-Situ Studies of Iron under Pressure: New Windows on the Earth's Core, Inter. Geol. Rev., 43: 1–30 (2001).
  43. G. Shen, H. K. Mao, R. J. Hemley, T. S. Duffy, and M. L. Rivers, Melting and Crystal Structure of Iron at High Pressures and Temperatures, Geophys. Res. Lett., 25: 373–376 (1998). Crossref
  44. T. Takahashi and W. A. Bassett, A High Pressure Polymorph of Iron, Science, 145: 483–486 (1964). Crossref
  45. Y. Ma, M. Somayazulu, G. Shen, H. Mao, J. Shu, and R. J. Hemley, In-Situ X-Ray Diffraction Studies of Iron to Earth-Core Conditions, Phys. Earth Planet Int., 143–144: 455–467 (2004). Crossref
  46. D. Andrault, G. Fiquet, M. Kunz, F. Visocekas, and D. Häusermann, The Orthorhombic Structure of Iron: An In Situ Study at High Temperature and High Pressure, Science, 278: 831–834 (1997). Crossref
  47. R. Boehler, Temperature in the Earth's Core From the Melting Point Measurements of Iron at High Static Pressures, Nature, 363: 534–536 (1993). Crossref
  48. S. K. Saxena, L. S. Dubrovinsky, and P. Häggkvist, X-Ray Evidence for the New Phase of β-Iron at High Temperature and High Pressure, Geophys. Res. Lett., 23: 2441–2444 (1996). Crossref
  49. O. L. Anderson and A. Duba, Experimental Melting Curve of Iron Revisited. J. Geophys. Res., 102: 22659–22669 (1997). Crossref
  50. W. A. Bassett and M. S. Weathers, Stability of the Body-Centred Cubic Phase of Iron—a Thermodynamic Analysis, J. Geophys. Res., 95: 21709–21711 (1990). Crossref
  51. M. Matsui, Molecular Dynamics Study of Iron at Earth's Inner Core Conditions, AIP Conf. Proc. (American Institute of Physics: 1993), pp. 887–891.
  52. L. Vočadlo, G. de Wijs, G. Kresse, M. J. Gillan, and G. D. Price, First Principles Calculations on Crystalline and Liquid Iron at Earth's Core Conditions: in Solid-State Chemistry—New Opportunities from Computer Simulations, Faraday Discussions, No. 106: 205–217 (1997).
  53. J. H. Nguyen and N. C. Holmes, Iron Sound Velocities in Shock Wave Experiments up to 400 GPa, AGU Abstracts 79: T21D-06 (1998).
  54. G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Physical Properties of Iron in the Inner Core, AGU Geodynamics Series Book on 'Core Structure, Dynamics, and Rotation' (Eds. V. Dehant et al.); http://arxiv.org/abs/physics/0204055v1
  55. C. M. S. Gannarelli, D. Alfè and M. J. Gillan, The Axial Ratio of HCP Iron at the Conditions of the Earth's Inner Core, Phys. Earth Planet Int., 152: 67–77 (2005). Crossref
  56. H. K. Mao, Y. Wu, L. C. Chen, J. F. Shu, and A. P. Jephcoat, Static Compression of Iron to 300 GPa and Fe0.8Ni0.2 Alloy to 260 GPa: Implications for Composition of the Core, J. Geophys. Res., 95: 21737–21742 (1990). Crossref
  57. E. Huang, W. A. Basset, and M. S. Weathers, Phase Relationships of Fe–Ni Alloys at High Pressures and Temperatures, J. Geophys. Res., 93: 7741–7746 (1988). Crossref
  58. J. F. Lin, D. L. Heinz, A. J. Campbell, J. M. Devine, W. L. Mao, and G. Shen, Iron–Nickel Alloy in Earth's Core, Geophys. Res. Lett., 29, No. 10: 109-1–3 (2002).
  59. E. Huang, W. A. Basset, and M. S. Weathers, Phase Diagram and Elastic Properties of Fe–30%Ni Alloy by Synchrotron, J. Geophys. Res., 97: 4497–4502 (1992). Crossref
  60. W. L. Mao, A. J. Campbell, D. L. Heinz, and G. Shen, Phase Relations of Fe–Ni Alloys at High Pressure and Temperature, Phys. Earth Planet Int., 155: 146–151 (2006). Crossref
  61. A. B. Belonoshko, R. Ahuja, and B. Johansson, Stability of the Body-Centered-Cubic Phase of Iron in the Earth's Inner Core, Nature, 424: 1032–1034 (2003). Crossref
  62. L. Vočadlo, D. Alfe, M. J. Gillan, I. G. Wood, J. P. Brodholt, and G. D. Price, Possible Thermal and Chemical Stabilization of Body-Centred-Cubic Iron in the Earth's Core, Nature, 424: 536–526 (2003). Crossref
  63. L. Vočadlo, D. Dobson, and I. G. Wood, An Ab Initio Study of Nickel Substitution into Iron, Earth Planet. Sci. Lett, 248: 147–152 (2006). Crossref
  64. L. Dubrovinsky, N. Dubrovinskaia, O. Narygina, I. Kantor, A. Kuznetsov, V. B. Prakapenka, L. Vitos, B. Johansson, A. S. Mikhaylushkin, S. I. Simak, and I. A. Abrikosov, Body-Centered Cubic Iron–Nickel Alloy in Earth's Core, Science, 316: 1880–1883 (2007). Crossref
  65. G. Shen, V. B. Prakapenka, M. L. Rivers, and S. R. Sutton, Structure of Liquid Iron at Pressures up to 58 GPa, Phys. Rev. Lett., 92, No. 18: 185701-1–4 (2004). Crossref
  66. G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, First Principles Elastic Constants for H.C.P. Transition Metals Fe, Co and Re at High Pressure, Phys. Rev. B, 60: 791–799 (1999). Crossref
  67. R. E. Cohen and S. Mukherjee, Non-Collinear Magnetism in Iron at High Pressures, Phys. Earth Planet Int., 143–144: 445–453 (2004). Crossref
  68. G. Steinle-Neumann, R. E. Cohen, and L. Stixrude, Magnetism in Iron as a Function of Pressure, J. Phys.: Condens. Matter, 16: S1109–S1119 (2004). Crossref
  69. G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Magnetism in Dense Hexagonal Iron, Proc. Natl. Acad. Sci., 101: 33–36 (2004). Crossref
  70. A. Ya. Shinyaev, Fazovye prevrashcheniya i svoystva splavov pri vysokom davlenii (Moskva: Nauka: 1973).
  71. L. S. Dubrovinsky, S. K. Saxena, F. Tutti, S. Rekhi, and T. LeBehan, In Situ X-Ray Study of Thermal Expansion and Phase Transition of Iron at Multimegabar Pressure, Phys. Rev. Lett., 84, No. 8: 1720–1723 (2000). Crossref
  72. L. Dubrovinsky and N. Dubrovinskaia, High-Pressure Crystallography at Elevated Temperatures: Experimental Approach, High Pressure Crystallography. NATO Series II. Mathematics, Physics and Chemistry (Eds. A. Katrusiak and P. McMillan) (Dordrecht: Kluwer Academic: 2004), pp. 393–410. Crossref
  73. Supporting Online Material on Science online: http://www.sciencemag.org/cgi/content/full/316/5833/1880/DC1
  74. J. M. Brown and R. G. McQueen, Phase Transitions, Grüneisen Parameter, and Elasticity for Shocked Iron Between 77 GPa and 400 GPa, J. Geophys. Res., 91, No. B7: 7485–7494 (1986). Crossref
  75. J. M. Brown, The Equation of State for Iron to 450 GPa: Another High Pressure Phase? Geophys. Res. Lett., 28, No. 22: 4339–4342 (2001). Crossref
  76. A. B. Belonoshko, R. Ahuja, and B. Johansson, Stability of the Body-Centred-Cubic Phase of Iron in the Earth's Inner Core, Nature, 424: 1032–1034 (2003). Crossref
  77. J. F. Lin, D. L. Heinz, A. J. Campbell, J. M. Devine, and G. Shen, Iron–Silicon Alloy in the Earth's Core, Science, 295: 313–315 (2002). Crossref
  78. G. Steinle-Neumann, L. Stixrude, R. E. Cohen, and O. Gulseren, Elasticity of Iron at the Temperature of the Earth's Inner Core, Nature, 413: 57–60 (2001). Crossref
  79. A. E. Krasovskii, Elastic and Thermal Properties of FeNi3 Alloy under Earth's Inner Core Conditions, Ukr. J. Phys., 50, No. 8: 836-842 (2005).
  80. C. Asker, L. Vitos, and I. A. Abrikosov, Elastic Constants and Anisotropy in FeNi Alloys at High Pressures from First-Principles Calculations, Phys. Rev B, 79: 214112 (2009). Crossref
  81. V. L. Sedov, Antiferromagnetizm gamma-zheleza. Problema invara (Moskva: Nauka: 1987).
  82. V. L. Sedov and O. A. Tsigel'nik, Magnetic Moments of Iron Atoms in Invar Fe–Ni Alloys, J. Magn. Magn. Mater., 183, Nos. 1–2: 117–126 (1998). Crossref
  83. V. M. Danilenko, D. R. Rizdvyanetskiy, A. A. Smirnov, Uporyadochenie ferromagnitnykh splavov s granetsentrirovannoy kubicheskoy reshetkoy, Fiz. Met. Metalloved., 15, No. 2: 194–202 (1963).
  84. J. L. Moran-Lopez and L. M. Falicov, Ferromagnetism and Spatial Long-Range Order in Binary Alloys, J. Phys. C: Solid State Phys., 13, No. 9: 1715–1723 (1980). Crossref
  85. F. Mejía-Lira, J. Urías, and J. L. Morán-López, Order–Disorder Transformation in Ferromagnetic Binary Alloys, Phys. Rev. B, 24, No. 9: 5270–5276 (1981). Crossref
  86. S. F. Dubinin, S. K. Sidorov, and E. Z. Valiev, Magnetic Properties and the Invar Effect of Iron-Nickel Alloys, Phys. Stat. Sol. (b), 46, No. 1: 337–344 (1971). Crossref
  87. S. K. Sidorov and A. V. Doroshenko, On the Magnetic Structure of Some Alloys of Transition Metals, Phys. Stat. Sol., 16, No. 2: 737–744 (1966). Crossref
  88. G. Inden, The Role of Magnetism in the Calculation of Phase Diagrams, Physica B, 103, No. 1: 82–100 (1981). Crossref
  89. G. Inden, Alloy Phase Diagrams (Eds. L. H. Bennett, T. B. Massalski, and B. C. Giessen) (New York: North-Holland: 1983), p. 175.
  90. G. Inden, Diagrammy faz v splavakh (Red. L. Bennet, T. Massalski, B. Gissen) (Moskva: Mir: 1986), ss. 114–127, 260 (Russian translation).
  91. J. Crangle and G. C. Hallam, Proc. Roy. Soc. A, The Magnetization of Face-Centred Cubic and Body-Centred Cubic Iron–Nickel Alloys, 272: 119–132 (1963).
  92. J. Ray and G. Chandra, Concentration Dependence of Curie Points of Some Magnetic Binary Alloys, Phys. Stat. Sol. (a), 34: K169–K172 (1976). Crossref
  93. T. Odagaki and T. Yamamoto, Magnetic Moment of Binary gamma-Alloys at 0 K, J. Phys. Soc. Japan, 32, No. 1: 104–109 (1972). Crossref
  94. V. M. Kalinin, V. A. Kornyakov, O. A. Khomenko, F. N. Dunaev, E. E. Yurchikov, O magnitnykh svoystvakh legirovannykh Fe–Ni-splavov, imeyushchikh granetsentrirovannuyu kubicheskuyu reshetku, Izv. AN SSSR. Ser. fiz., 36, No. 7: 1602–1605 (1972).
  95. M. F. Collins, R. V. Jones, and R. D. Lowde, J. Phys. Soc. Japan, 17, Suppl. B-III: 19 (1962).
  96. E. I. Kondorskiy, L. N. Fedotov, Zavisimost' magnitnogo nasyshcheniya ot temperatury dlya binarnykh zhelezo-nikelevykh splavov v oblasti nizkikh temperatur, Izv. AN SSSR. Ser. fiz., 16, No. 4: 432–448 (1952).
  97. G. K. Shull and M. K. Wilkinson, Neutron Diffraction Studies of the Magnetic Structure of Alloys of Transition Elements, Phys. Rev., 97, No. 2: 304–310 (1955). Crossref
  98. Y. Bando, The Magnetization of Face Centered Cubic Iron–Nickel Alloys in the Vicinity of Invar Region (Short Notes), J. Phys. Soc. Japan, 19: 237–237 (1964). Crossref
  99. H. R. Child and J. W. Cable, Temperature Dependence of the Magnetic-Moment Distribution Around Impurities in Iron, Phys. Rev. B, 13, No. 1: 227–235 (1976). Crossref
  100. M. F. Collins and J. B. Forsyth, The Magnetic mMoment Distribution in Some Transition Metal Alloys, Phil. Mag., 8, No. 87: 401–410 (1963). Crossref
  101. M. Nishi, Y. Nakai, and N. Kunitomi, Magnetic Moments in Fe–Ni Alloys (Short Notes), J. Phys. Soc. Japan, 37: 570–570 (1974). Crossref
  102. J. W. Cable and E. O. Wollan, Magnetic-Moment Distribution in Ni–Fe and Au–Fe Alloys, Phys. Rev. B, 7, No. 5: 2005–2016 (1973). Crossref
  103. G. G. Low and M. F. Collins, Magnetic Moment Distributions in Dilute Nickel Alloys, J. Appl. Phys., 34, No. 4: 1195–1199 (1963). Crossref
  104. Y. Ito, J. Akimitsu, M. Matsui, and S. Chikazumi, Magnetic Form Factor of Fe0.66Ni0.34 Invar Alloy, J. Magn. Magn. Mater., 10, Nos. 2–3: 194–196 (1979). Crossref
  105. R. A. Reck, Local Magnetic Moments and g' in Fe–Ni Alloys, Phys. Rev. B, 9, No. 5: 2381–2385 (1974). Crossref
  106. Physics and Applications of Invar Alloys. Honda Memorial Series on Materials Science. No. 3 (Tokyo: Maruzen Company: 1978).
  107. J. W. Cable and W. E. Brundage, Magnetic Moment Distribution in Fe0.6860Ni0.32, J. Appl. Phys., 53, No. 11: 8085–8087 (1982). Crossref
  108. P. J. Lawrence and P. L. Rossiter, Chemical and Magnetic Interactions in FCC Fe–Ni Alloys Using the Cluster Variation Method, J. Phys. F: Metal Phys., 16, No. 5: 543–556 (1986). Crossref
  109. J. L. Robertson, G. E. Ice, C. J. Sparks, X. Jiang, P. Zschack, F. Bley, S. Lefebvre, and M. Bessiere, Local Atomic Arrangements in Fe63.2Ni36.8 Invar from Diffuse X-Ray Scattering Measurements, Phys. Rev. Lett., 82, No. 14: 2911–2914 (1999). Crossref
  110. X. Jiang, G. E. Ice, C. J. Sparks, L. Robertson, and P. Zschack, Local Atomic Order and Individual Pair Displacements of Fe46.5Ni53.5 and Fe22.5Ni77.5 from Diffuse X-Ray Scattering Studies, Phys. Rev. B, 54, No. 5: 3211–3226 (1996). Crossref
  111. C. Heck, Magnetic Materials and Their Applications (London: Butterworths: 1974), p. 201.
  112. L. N. Larikov, Yu. V. Usov, Termodinamicheskie svoystva zhelezonikelevykh splavov (Preprint IMF 78.5) (Kiev: IMF AN USSR: 1978).
  113. M. Matsushita, S. Endo, K. Miura, and F. Ono, Pressure Induced Magnetic Phase Transition in Fe–Ni Invar Alloy, J. Magn. Magn. Mater., 265, No. 3: 352–356 (2003). Crossref
  114. I. I. Yakimov, G. F. Torba, V. V. Litvintsev, Zavisimost' obmennogo vzaimodeystviya ot mezhatomnogo rasstoyaniya v zhelezo-nikelevykh splavakh, Fiz. Met. Metalloved., 47, No. 1: 67–71 (1979).
  115. A. Z. Men'shikov, E. E. Yurchikov, Izv. AN SSSR. Ser. fiz., 36, No. 7: 1463–1467 (1972).
  116. I. F. Bolling, A. Arrott, and R. H. Richman, Curie Temperatures and the Effect of Carbon in Face-Centered Cubic Iron–Nickel Alloys, Phys. Stat. Sol., 26, No. 2: 743–750 (1968). Crossref
  117. J. Ray and G. Chandra, Concentration Dependence of Curie Points of Some Magnetic Binary Alloys, Phys. Stat. Sol. (a), 34, No. 2: K169–K172 (1976). Crossref
  118. Belov K. P. Magnitnye prevrashcheniya (Moskva: Fizmatgiz: 1959).
  119. A. Ferro-Milone, I. Ortalli, and G. P. Soardo, Curie Temperature of Ni–Fe Alloys in the Region 24–35% Ni from Mössbauer Experiments, Nuovo Cimento D, 1: 18–20 (1982). Crossref
  120. H. Asano, Magnetism of γ Fe–Ni Invar Alloys with Low Nickel Concentration, J. Phys. Soc. Japan, 27, No. 3: 542 (1969). Crossref
  121. J. G. Dash, B. D. Dunlap, and D. G. Howard, Internal Field of Fe57 in Nickel from 77 K to the Curie Point, Phys. Rev., 141, No. 1: 376–378 (1966). Crossref
  122. Fizika tverdogo tela: Entsiklopedicheskiy slovar'. V 2-kh t. (Red. V. G. Bar'yakhtar, V. L. Vinetskiy et al.), vol. 1, p. 296.
  123. D. L. Williamson, W. Keune, and U. Gonzer, Trudy Mezhdunarodnoy konferentsii po magnetizmu MKM-73 (Moskva: Nauka: 1974), vol. 1 (2), p. 246.
  124. M. Schröter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, and G. G. Reddy, First Principles Investigations of Atomic Disorder Effects on Magnetic and Structural Instabilities in Transition-Metal Alloys, Phys. Rev. B, 52, No. 1: 188–209 (1995). Crossref
  125. M. Hansen, Constitution of Binary Alloys (2nd ed.) (New York: McGraw-Hill: 1958).
  126. S. Chikazumi, T. Mizoguchi, N. Yamaguchi, and P. Beckwith, The Invar Problem, J. Appl. Phys., 39, No. 2: 939–944 (1968). Crossref
  127. M. Acet, T. Schneider, and E. F. Wassermann, Magnetic Aspects of Martensitic Transformations in Fe–Ni Alloys, J. Phys. (France) IV, 5, No. C2: C2-105–109 (1995).
  128. T. Miyazaki, Y. Ando, and M. Takahashi, Spin Glass in Fe–Ni Invar Alloys, J. Appl. Phys., 57, No. 8: 3456–3460 (1985). Crossref
  129. W. A. A. Macedo and W. Keune, Magnetism of FCC-Fe(100) Films on Cu(100) Investigated In Situ by Conversion-Electron Mössbauer Spectroscopy in Ultrahigh Vacuum, Phys. Rev. Lett., 61, No. 4: 475–468 (1988). Crossref
  130. A. Onodera, Y. Tsunoda, N. Kunitomi, O. A. Pringle, R. M. Nicklow, and R. Moon, Neutron-Diffraction Study of gamma-Fe at High Pressure, Phys. Rev. B, 50, No. 6: 3532–3535 (1994). Crossref
  131. V. I. Chechernikov, Ob antiferromagnetizme zhelezo-nikelevykh splavov, ZhETF, 42, No. 4: 956–958 (1962).
  132. P. Weiss and G. Foex, J. de Physique, 1: 805–814 (1911).
  133. S. V. Vonsovskiy, Magnetizm (Moskva: Nauka: 1971).
  134. Dzh. Smart, Effektivnoe pole v teorii magnetizma (Moskva: Mir: 1968) (Russian translation)
  135. W. F. Schlosser, The Temperature Dependence of the Magnetic Moment of Iron, Nickel and Invar for T/TC < 0.5, Phys. Lett. A, 40, No. 3: 195–196 (1972). Crossref
  136. Y. Nakamura, K. Sumiyama, and M. Shiga, Fe–Pt Invar Alloys—Homogeneous Strong Ferromagnets, J. Magn. Magn. Mater., 12, No. 2: 127–134 (1979). Crossref
  137. K. Sumiyama, M. Shiga, and Y. Nakamura, Magnetovolume Effects in Fe–Pt Invar Alloys, J. Magn. Magn. Mater., 12, No. 1: 1–3 (1979). Crossref
  138. M. R. Gallas and J. A. H. da Jornada, Effect of Annealing Processes on the Curie Temperature of Fe–Ni Invar Alloys, J. Phys.: Condens. Matter, 3: 155–162 (1991). Crossref
  139. A. Chamberod, J. Langier, and J. M. Penisson, Electron Irradiation Effects on Iron–Nickel Invar Alloys, J. Mag. Magn. Mater., 10, Nos. 2–3: 139–144 (1979). Crossref
  140. Yu. V. Baldokhin, V. V. Tcherdyntsev, S. D. Kaloshkin, G. A. Kochetov, and Yu. A. Pustov, Transformations and Fine Magnetic Structure of Mechanically Alloyed Fe–Ni Alloys, J. Magn. Magn. Mater., 203, Nos. 1–3: 313–315 (1999). Crossref
  141. S. D. Kaloshkin, V. V. Tcherdyntsev, Yu. V. Baldokhin, I. A. Tomilin, and E. V. Shelekhov, Mechanically Alloyed Low-Nickel Austenite Fe–Ni Phase: Evidence of Single-Phase Paramagnetic State, J. Non-Cryst. Solids, 287: 329–333 (2001). Crossref
  142. Y. A. Abdu, T. Ericsson, and H. Annersten, Coexisting Antiferromagnetism and Ferromagnetism in Mechanically Alloyed Fe-Rich Fe–Ni Alloys: Implications Regarding the Fe–Ni Phase Diagram Below 400°C, J. Magn. Magn. Mater., 280, Nos. 2–3: 395–403 (2004). Crossref
  143. W. F. Schlosser, A Model for the Invar Alloys and the Fe–Ni System, J. Phys. Chem. Solids, 32, No. 5: 939–949 (1971). Crossref
  144. W. F. Schlosser, Occurrence of Invar Anomalies in Binary Alloys of Fe with Ni, Pd, Pt, and Mn, J. Appl. Phys., 42, No. 4: 1700–1701 (1971). Crossref
  145. H. Morita, Y. Tanji, H. Hiroyoshi, and Y. Nakagawa, Neutron Irradiation Effects on Magnetic Properties of Iron–Nickel Invar Alloys, J. Magn. Magn. Mater., 31–34, Part 1: 107–108 (1983). Crossref
  146. M. Roth, A. Chamberod, and L. Billard, Short Range Order in a 70–30 FeNi Alloy, J. Magn. Magn. Mater., 7, Nos. 1–4: 104–106 (1978). Crossref
  147. H. Franco and H. R. Rechenberg, A Mössbauer Study of the Miscibility Gap in Iron–Nickel Invar Alloys, J. Phys. F: Metal Phys., 15, No. 3: 719–725 (1985). Crossref
  148. V. I. Goman'kov, Tonkaya kristallicheskaya i atomnaya magnitnaya struktura splavov na osnove sistemy zhelezo–nikel' (Avtoref. dissertatsii na soiskanie uch. step. d-ra fiz.-mat. nauk) (Moskva: TsNIICherMet: 1980).
  149. A. V. Kolubaev, Atomnoe i magnitnoe uporyadochenie v splavakh s granetsentrirovannoy kubicheskoy reshetkoy (Avtoref. dissertatsii na soiskanie uch. step. kand. fiz.-mat. nauk) (Tomsk: TGU: 1978).
  150. V. I. Goman'kov, E. V. Kozis, I. M. Puzey, E. I. Mal'tsev, Neytronograficheskoe issledovanie blizhnego atomnogo poryadka v sisteme nikel'–zhelezo, Dokl. IV Vsesoyuz. soveshch. po uporyadocheniyu atomov i ego vliyaniyu na svoystva splavov (Tomsk: TGU: 1974), ch. I, s. 164–168.
  151. V. I. Goman'kov, I. M. Puzey, A. A. Loshmanov, E. I. Mal'tsev, Dal'niy poryadok v splavakh sistemy Ni–Fe, Izv. AN SSSR. Metally, No. 1: 160–163 (1971).
  152. V. G. Gavrilyuk, V. M. Nadutov, Vliyanie raspredeleniya atomov ugleroda na kvadrupol'noe vzaimodeystvie v Fe–Ni–C austenite, Fiz. Met. Metalloved., 55, No. 3: 520–527 (1983).
  153. A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Magnetic State, Magnetovolume Effects, and Atomic Order in Fe65Ni35 Invar Alloy: a First Principles Study, Phys. Rev. B, 76, No. 1: 014420-1–014420-9 (2007). Crossref
  154. S. Lefebvre, F. Bley, M. Bessiere, and M. Fayard, Short-Range Order in Ni3Fe, Acta Cryst., A36: 1–7 (1980). Crossref
  155. A. Z. Men'shikov, V. E. Arkhipov, A. I. Zakharov, S. K. Sidorov, Atomnaya korrelyatsiya v invarnykh zhelezonikelevykh splavakh, Fiz. Met. Metalloved., 34, No. 2: 309–315 (1972).
  156. V. V. Sadchikov, I. M. Puzey, Ob obrazovanii sverkhstruktury tipa L10 v sisteme Fe–Ni, Fiz. Met. Metalloved., 56, No. 4: 829–831 (1983).
  157. G. Hausch and H. Warlimont, Structural Inhomogeneity in Fe–Ni Invar Alloys Studied by Electron Diffraction, Phys. Lett. A, 36, No. 5: 415–416 (1971). Crossref
  158. G. Hausch and H. Warlimont, Single Crystalline Elastic Constants of Ferromagnetic Face Centered Cubic Fe–Ni Invar Alloys, Acta Metall., 21, No. 4: 401–414 (1973). Crossref
  159. A. P. Miodownik, The Invar Behaviour of Iron–Nickel–Platinum Alloys, J. Magn. Magn. Mater., 10, Nos. 2–3: 126–135 (1979). Crossref
  160. L. I. Lysak, S. A. Artemyuk, Yu. M. Polishchuk, Vliyanie atomnogo uporyadocheniya na strukturu vtorichnogo martensita, Fiz. Met. Metalloved., 35, No. 5: 1098–1101 (1973).
  161. P. L. Gruzin, Yu. L. Rodionov, E. S. Machurin, O. S. Sarsenbin, Vliyanie oblucheniya elektronami i deformatsii na martensitnoe prevrashchenie v splavakh zhelezo–nikel', Dokl. AN SSSR, 228, No. 3: 590–592 (1976).
  162. R. A. Jago and P. L. Rossiter, A Re-Examination of Long-Range Ordering at Fe–25 at.% Ni, Phys. Stat. Sol. (a), 73, No. 2: 497–502 (1982). Crossref
  163. J. A. Tsoukalas, On the Atomic Ordering of Fe-Rich, Fe(1–x)Ni(x) Binary Alloys, Phys. Stat. Sol. (a), 68: K67–K70 (1981). Crossref
  164. J. A. Tsoukalas, K. Eftimiades, Th. Karakostas, and J. G. Antonopoulos, On the Structural and Transport Properties of the Ni–Fe Invar Alloy System, Mater. Res. Bull., 19, No. 11: 1463–1469 (1984). Crossref
  165. K. B. Reuter, D. B. Williams, and J. I. Goldstein, Determination of the Fe–Ni Phase Diagram Below 400°C, Metall. Trans. A, 20, No. 4: 719–725 (1989). Crossref
  166. R. B. Scorzelli, Meteorites: Messengers from the Outer Space, J. Braz. Chem. Soc., 19, No. 2: 226–231 (2008). Crossref
  167. E. V. Kozlov, A. S. Taylashev, D. M. Shtern, A. A. Klopotov, Prevrashchenie poryadok–besporyadok v splave Ni3Fe, Izv. vuzov SSSR. Fizika, No. 5: 32–39 (1977).
  168. M. Hatherly, K. Hirukawa, R. D. Lowde, J. F. Mallett, M. W. Stringfellow, B. H. Torrie, Spin Wave Energies and Exchange Parameters in Iron–Nickel Alloys, Proc. Phys. Soc., 84, No. 1: 55–62 (1964). Crossref
  169. S. K. Sidorov, A. V. Doroshenko, O magnitnoy strukture splavov Ni–Fe, imeyushchikh granetsentrirovannuyu kubicheskuyu reshetku, Fiz. Met. Metalloved., 19, No. 5: 786–788 (1965).
  170. E. Z. Valiev, A. V. Doroshenko, S. K. Sidorov, Yu. M. Nikulin, S. G. Teploukhov, Magnitnaya struktura neuporyadochennykh splavov sistem nikel'–marganets i zhelezo–nikel'–marganets v okrestnosti kontsentratsii c0(0°K), Fiz. Met. Metalloved., 38, No. 5: 993–1000 (1974).
  171. S. K. Sidorov, A. Z. Men'shikov, V. A. Kazantsev, Sredniy magnitnyy moment atomov v splavakh zhelezo–palladiy s GTsK reshetkoy, Fiz. Met. Metalloved., 34, No. 4: 749–752 (1972).
  172. A. Z. Men'shikov, Yu. A. Dorofeev, V. A. Kazantsev, S. K. Sidorov, Magnitnaya struktura uporyadochennykh zhelezoplatinovykh splavov, Fiz. Met. Metalloved., 38, No. 3: 505–518 (1974).
  173. A. Z. Menshikov, Invar Effect by Local Moment Model, J. Magn. Magn. Mater., 5, No. 3: 188–195 (1977). Crossref
  174. A. Z. Menshikov, Local Moment Model for the Invar Effect, J. Magn. Magn. Mater., 10, Nos. 2–3: 205–213 (1979). Crossref
  175. S. K. Sidorov, Fenomenologicheskaya teoriya namagnichennosti splavov so smeshannym obmennym vzaimodeystviem, Fiz. Met. Metalloved., 45, No. 3: 532–546 (1978).
  176. J. B. Müller and J. Hesse, A Model for Magnetic Abnormalies of Fe–Ni Invar Alloys. I. Macroscopic Magnetic Properties, Z. Phys. B, 54, No. 1: 35–42 (1983). Crossref
  177. J. B. Müller and J. Hesse, A Model for Magnetic Abnormalies of Fe–Ni Invar Alloys. II. Microscopic Properties, Z. Phys. B, 54, No. 1: 43–48 (1983). Crossref
  178. V. E. Arkhipov, A. Z. Men'shikov, S. K. Sidorov, Effekt malouglovogo rasseyaniya neytronov v zhelezo-nikelevykh splavakh, Pis'ma v ZhETF, 12, No. 7: 356–359 (1970).
  179. A. Z. Men'shikov, V. A. Shestakov, S. K. Sidorov, Kriticheskoe rasseyanie neytronov v invarnykh zhelezo-nikelevykh splavakh, ZhETF, 70: 163–171 (1976).
  180. A. Z. Men'shikov, V. A. Shestakov, Magnitnye neodnorodnosti v invarnykh zhelezonikelevykh splavakh, Fiz. Met. Metalloved., 43, No. 4: 722–733 (1977).
  181. M. Dubé, P. R. L. Heron, D. G. Rancourt, Local Moment Magnetism of FCC Fe–Ni Alloys. I. Cluster-Method Mean Field Theory, J. Magn. Magn. Mater., 147, Nos. 1–2: 122–132 (1995). Crossref
  182. M.-Z. Dang, M. Dubé, D. G. Rancourt, Local Moment Magnetism of FCC Fe–Ni Alloys. II. Ising Approximation Monte Carlo, J. Magn. Magn. Mater., 147, Nos. 1–2: 133–140 (1995). Crossref
  183. A. Z. Men'shikov, N. N. Kuz'min, S. K. Sidorov, Yu. A. Dorofeev, Obmennoe vzaimodeystvie v splavakh Fe–Ni, Fe–Pd i Fe–Pt, Fiz. Tverd. Tela, 16, No. 11: 3347–3352 (1974).
  184. T. Maeda, H. Yamauchi, H. Watanabe, Spin Wave Resonance and Exchange Parameters in FCC Fe–Ni Alloys, J. Phys. Soc. Japan, 35, No. 6: 1635–1642 (1973). Crossref
  185. S. V. Semenovskaya, Izuchenie termodinamicheskikh i diffuzionnykh svoystv binarnykh tverdykh rastvorov metodom diffuznogo rasseyaniya rentgenovskikh luchey (Disser. … d-ra fiz.-mat. nauk) (Kiev: IMF AN USSR: 1976).
  186. S. V. Semenovskaya, The Application of X-Ray Diffuse Scattering to the Calculation of the Fe–Al Equilibrium Diagram, Phys. stat. sol. (b), 64, No. 1: 291–303 (1974). Crossref
  187. L. N. Larikov, Yu. V. Usov, T. V. Efimova, S. V. Zolkina, Vliyanie atomnogo uporyadocheniya na temperaturu Kyuri i namagnichennost' nasyshcheniya v Fe–Ni (GTsK) splavakh invarnoy oblasti, Materialy VI Vsesoyuz. soveshch. «Uporyadochenie atomov i ego vliyanie na svoystva splavov» (17–19 okt. 1978, Kiev) (Kiev: Naukova dumka: 1979), ss. 204–207.
  188. C. R. Houska, A Theoretical Treatment of Atomic Configurations Found in Some Iron–Aluminum Solid Solutions, J. Phys. Chem. Solids, 24, No. 1: 95–107 (1963). Crossref
  189. T. W. McDaniel and C. L. Foiles, Paramagnetic Curie Temperature in Dilute Magnetic alloys: Influence of Order–Disorder Transitions, Solid State Commun., 14, No. 9: 835–839 (1974). Crossref
  190. V. G. Pyn'ko, L. V. Zhivaeva, A. S. Komalov, Koertsitivnaya sila i atomnoe uporyadochenie v epitaksial'nykh plenkakh splava zhelezo–palladiy, Fiz. Met. Metalloved., 42, No. 1: 63–67 (1976).
  191. V. G. Pyn'ko, A. S. Komalov, and L. V. Ivaeva, Influence of Atomic Order on Magnetic Properties of Fe–Pd and Fe–Pt Films, Phys. Stat. Sol. (a), 63: K127–K130. Crossref
  192. V. Pierron-Bohnes, I. Mirebeau, E. Balanzat, and M. C. Cadeville, Evidence of a Coupling Between Magnetic and Chemical Interactions in FeV Alloys: metallurgical aspects, J. Phys. F: Metal Phys., 14, No. 1: 197–210 (1984). Crossref
  193. L. H. Adams and J. W. Green, Phil. Mag., 12: 361 (1931). Crossref
  194. R. L. Steinberger, Magnetic Properties of Iron–Nickel Alloys Under Hydrostatic Pressure (Ph.D. Thesis—American Doctoral Dissertations) (Harvard University: 1932).
  195. H. Ebert and A. Kussmann, Physika, 38: 437 (1937).
  196. A. Michels and S. R. de Groot, Physika, 16: 249 (1950).
  197. L. Patrick, The Change of Ferromagnetic Curie Points with Hydrostatic Pressure, Phys. Rev., 93, No. 3: 384–392 (1954). Crossref
  198. D. Bloch, Ann. Phys. (Paris), 14: 93 (1965). Crossref
  199. D. L. Williamson, S. Bukshpan, and R. Ingalls, Search for Magnetic Ordering in HCP Iron, Phys. Rev. B, 6, No. 11: 4194–4206 (1972). Crossref
  200. D. B. McWhan and A. L. Stevens, Magnetic Properties of Some Rare-Earth Alloys at High Pressure, Phys. Rev., 154, No. 2: 438–445 (1967). Crossref
  201. D. R. Rhiger and R. Ingalls, Evidence for Antiferromagnetism for Invar at Pressures, Phys. Rev. Lett., 28, No. 12: 749–753 (1972). Crossref
  202. J. M. Leger, C. Susse, R. Epain, and B. Vodar, Variation de la Temperature de Curie du Nickel Sous l'Effet de la Pression Jusqu'a 60 Kilobars, Solid State Commun., 4, No. 5: 197–199 (1966) (in French). Crossref
  203. J. M. Leger, C. Susse, and B. Vodar, Proprietes Magnetiques du Fer et de l'Invar Sous Hautes Pressions, Solid State Commun., 4, No. 10: 503–505 (1966) (in French). Crossref
  204. J. M. Leger, C. Susse, and B. Vodar, Variation de la Temperature de Curie du Cobalt et de Six Alliages Fer–Nickel en Fonction de la Pression, Solid State Commun., 5, No. 9: 755–758 (1967) (in French). Crossref
  205. J. M. Leger, C. Loriers-Susse, and B. Vodar, Pressure Effects on the Curie Temperatures of Transition Metals and Alloys, Phys. Rev. B, 6, No. 11: 4250–4261 (1972). Crossref
  206. L. Dubrovinsky, N. Dubrovinskaia, I. A. Abrikosov, M. Vennström, F. Westman, S. Carlson, M. van Schilfgaarde, and B. Johansson, Pressure-Induced Invar Effect in Fe–Ni Alloys, Phys. Rev. Lett., 88, No. 21: 4851–4854 (2001). Crossref
  207. R. E. Cohen and S. Gramsch, G. Steinle-Neumann, and L. Stixrude, Importance of Magnetism in Phase Stability, Equations of State, and Elasticity, Proceedings of the International School of Physics Enrico Fermi. Vol. CXLVII. High-Pressure Phenomena (Eds. R. J. Hemley, M. Bernasconi, L. Ulivi, and G. Chiarotti) (Washington, DC: IOS Press: 2003), pp. 215–238; http://arxiv.org/abs/cond-mat/0110025v5.
  208. Y. Matsushima, N. Q. Sun, H. Kanamitsu, M. Matsushita, A. Iwase, Y. Chimi, N. Ishikawa, T. Kambara, and F. Ono, Pressure Dependence of the Irradiation-Induced Ferromagnetism in Fe–Ni Invar Alloys, J. Magn. Magn. Mater., 298, No. 1: 14–18 (2006). Crossref
  209. S. Wei, R. Duraj, R. Zach, M. Matsushita, A. Takahashi, H. Inoue, F. Ono, H. Maeta, A. Iwase, and S. Endo, The Effect of Pressure on the Curie Temperature in Fe–Ni Invar Mechanical Alloys, J. Phys.: Condens. Matter., 14: 11081–11084 (2002). Crossref
  210. O. Yamada, I. Nakai, H. Fujiwara, and F. Ono, High-Field Susceptibility and Magnetization in Fe–Ni Invar Alloys, J. Magn. Magn. Mater., 10, Nos. 2–3: 155–156 (1979). Crossref
  211. O. Yamada, F. Ono, I. Nakai, and H. Fujiwara, Explanation of Fe–Ni Invar Anomalies by Itinerant Electron Magnetism, J. Magn. Magn. Mater., 15–18, Part 3: 1199–1200 (1980). Crossref
  212. M. M. Abd-Elmeguid, U. Hobuss, H. Micklitz, B. Huck, and J. Hesse, Nature of the Magnetic Ground State in Fe–Ni Invar Alloys, Phys. Rev. B, 35, No. 10: 4796–4800 (1987). Crossref
  213. M. M. Abd-Elmeguid, B. Schleede, and H. Micklitz, Pressure-Induced Antiferromagnetism in FCC Fe–Ni Invar Alloys, J. Magn. Magn. Mater., 72, No. 3.2: 253–257 (1988).
  214. G. Hausch, Low Temperature Acoustic Relaxation Effect in Fe–Ni and Fe–Pt Invar Alloys, J. Phys. F: Metal Phys., 6, No. 6: (1976). Crossref
  215. D. G. Rancourt, H. H. A. Smit, and R. C. Thiel, Metastable Compositionally and Magnetically Modulated State of Fe–Ni Invar and the Associated Super-Moment Dynamics from Mössbauer Spectroscopy, J. Magn. Magn. Mater., 66, No. 1.2: 121–152 (1987).
  216. D. G. Rancourt, S. Chehab, and G. Lamarche, Reentrant Magnetism, Antiferromagnetism, and Domain Wall Pinning in Nominally Ferromagnetic Fe–Ni Invar, J. Magn. Magn. Mater., 78, No. 2: 129–152 (1989). Crossref
  217. I. Abrikosov, L. Dubrovinsky, and N. Dubrovinskaia, Pressure Induced Invar Effect in Fe–Ni Alloys: Theory and Experiment, APS Meetings. March Meeting (2003); http://flux.aps.org/meetings/YR03/MAR03/baps/abs/S6740009.html
  218. A. Iwase, Y. Hamatani, Y. Mukumoto, N. Ishikawa, Y. Chimi, T. Kambara, C. Müller, R. Neumann, and F. Ono, Anomalous Shift of Curie Temperature in Iron–Nickel Invar Alloys by High-Energy Heavy Ion Irradiation, Nucl. Instrum. Meth. Phys. Res. B, 209: 323–328 (2003). Crossref
  219. F. Ono, Y. Hamatani, Y. Mukumoto, S. Komatsu, N. Ishikawa, Y. Chimi, A. Iwase, T. Kambara, C. Müller, and R. Neumann, Modification of Fe–Ni Invar Alloys by High-Energy Ion Beams, Nucl. Instrum. Meth. Phys. Res. B, 206: 295–298 (2003). Crossref
  220. F. Ono, Y. Matsushima, Y. Chimi, N. Ishikawa, T. Kambara, and A. Iwase, Irradiation-Induced Ferromagnetism in Fe-Based Invar Alloys with High-Energy Heavy Ions, J. Magn. Magn. Mater., 310, No. 2, Part 2: 1864–1865 (2007).
  221. F. Ono, M. Asano, R. Tanaka, S. Nakamichi, and S. Endo, Pressure Dependence of the High Field Susceptibility in Fe–Ni Invar Alloys, Physica B, 177: 127–131 (1992). Crossref
  222. P. Mohn, K. Schwarz, and D. Wagner, Magnetoelastic Anomalies in Fe–Ni Invar Alloys, Phys. Rev. B, 43, No. 4: 3318–3324 (1993). Crossref
  223. A. B. Papandrew, M. S. Lucas, R. Stevens, I. Halevy, and B. Fultz, Absence of Magnetism in HCP Iron–Nickel at 11 K, Phys. Rev. Lett., 97, No. 8: 087202-1–4 (2006). Crossref
  224. L. Kaufmann, E. V. Clougherty, and R. J. Weiss, The Lattice Stability of Metals—III. Iron, Acta Metall., 11, No. 11: 323–335 (1963).
  225. G. C. Kennedy and R. C. Newton, Solid–Liquid and Solid–Solid Phase Transitions in Some Pure Metals at High Temperatures and Pressures, Solids Under Pressure (Ed. W. Paul) (New York: McGraw-Hill: 1962), pp. 163–178.
  226. W. F. Claussen, Detection of the alpha–gamma Iron Phase Transformation by Differential Thermal Conductivity Analysis, Rev. Sci. Instrum., 31, No. 8: 878–881 (1960). Crossref
  227. E. P. Wohlfarth, Forced Magnetostriction in the Band Model of Magnetism J. Phys. C: Sol. St. Phys., 2, No. 1: 68–74 (1969). Crossref
  228. R. J. Weiss, The Origin of the 'Invar' Effect, Proc. Phys. Soc. (London), 82: 281–288 (1963). Crossref
  229. H. Hasegawa, A Theory of Magneto-Volume Effects of Itinerant-Electron Magnets. II. Pressure Dependence of the Critical Temperature, J. Phys. Soc. Japan, 51, No. 3: 767–775 (1982). Crossref
  230. I. A. Abrikosov, O. Eriksson, P. Soderlind, H. L. Skriver, and B. Johansson, Theoretical Aspects of Fe(c)Ni(1–c) Invar Alloy, Phys. Rev. B, 51, No. 2: 1058–1063 (1995). Crossref
  231. M. van Schilfgaarde, I. A. Abrikosov, and B. Johansson, Origin of the Invar Effect in Iron–Nickel Alloys, Nature, 400: 46–49 (1999). Crossref
  232. V. L. Moruzzi, P. M. Marcus, K. Schwarz, and P. Mohn, Ferromagnetic Phases of BCC and FCC Fe, Co, and Ni, Phys. Rev. B, 34, No. 3: 1784–1791 (1986). Crossref
  233. S. Endo, T. Nishino, and F. Ono, Science and Technology of High Pressure (Ed. M. H. Manghani) (India: University Press: 2000), p. 771.
  234. M. Matsushita, S. Endo, K. Miura, and F. Ono, Pressure-Induced Change of the Magnetic State in Ordered Fe–Pt Invar Alloy, J. Magn. Magn. Mater., 269: 393–397 (2004). Crossref
  235. P. Mohn, D. Wagner, and E. P. Wohlfarth, Magnetoelastic Anomalies due to Spin Fluctuations in Weakly Itinerant Ferromagnetic Systems, J. Phys. F: Metal Phys., 17: L13 (1987). Crossref
  236. D. R. Rizdvyanetskiy, O vliyanii davleniya na fazovye perekhody v ferromagnitnykh i antiferromagnitnykh uporyadochivayushchikhsya splavakh, Ukrainian Physical Journal, 14, No. 10: 1630–1634 (1969).
  237. K. Kübler, Magnetic Moments of Ferromagnetic and Antiferromagnetic BCC and FCC Iron, Phys. Lett., A81, No. 1: 81–83 (1981). Crossref
  238. D. Bagayoko and J. Callaway, Lattice-Parameter Dependence of Ferromagnetism in BCC and FCC Iron, Phys. Rev. B, 28, No. 10: 5419–5422 (1983). Crossref
  239. C. S. Wang, B. M. Klein, and H. Krakauer, Theory of Magnetic and Structural Ordering in Iron, Phys. Rev. Lett., 54, No. 16: 1852–1855 (1985). Crossref
  240. F. J. Pinski, J. Staunton, B. L. Gyorffy, D. D. Johnson, and G. M. Stocks, Ferromagnetism versus Antiferromagnetism in Face-Centered Cubic Iron, Phys. Rev. Lett., 56, No: 19: 2096–2099 (1986). Crossref
  241. P. James, O. Eriksson, B. Johansson, and I. A. Abrikosov, Calculated Magnetic Properties of Binary Alloys Between Fe, Co, Ni and Cu, Phys. Rev. B, 59, No. 1: 419 (1999). Crossref
  242. J. Goniakowski and M. Podgorny, Antiferromagnetism in Hexagonal Chromium, Manganese, and Iron, Phys. Rev. B, 44, No. 22: 12348–12352 (1991). Crossref
  243. H. Ohno and M. Mekata, Antiferromagnetism in HCP Iron–Manganese Alloys, J. Phys. Soc. Japan, 31, No. 1: 102–108 (1971). Crossref
  244. H. Ohno, Antiferromagnetism in HCP Iron–Ruthenium and HCP Iron–Osmium Alloys, J. Phys. Soc. Japan, 31, No. 1: 92–101 (1971). Crossref
  245. L. Stixrude, R. E. Cohen, and D. J. Singh, Iron at High Pressure: Linearized-Augmented-Plane-Wave Computations in the Generalized-Gradient Approximation, Phys. Rev. B, 50, No. 9: 6442–6445 (1994). Crossref
  246. V. Thakor, J. B. Staunton, J. Poulter, S. Ostanin, B. Ginatempo, and E. Bruno, Ab Initio Calculations of Incommensurate Antiferromagnetic Spin Fluctuations in HCP Iron under Pressure, Phys. Rev. B, 67, No. 18: 180405-1–4 (2003). Crossref
  247. D. Bancroft, E. Peterson, and S. Minshall, Polymorphism of Iron at High Pressure, J. Appl. Phys., 27, No. 3: 291–298 (1956). Crossref
  248. G. Cort, R. Taylor, and J. Willis, Search for Magnetism in HCP epsilon-Fe, J. Appl. Phys., 53, No. 3: 2064–2066 (1982). Crossref
  249. S. Nasu, T. Sasaki, T. Kawakami, T. Tsutsui, and S. Endo, Mössbauer Study of epsilon-Fe under an External Magnetic Field, J. Phys. Condens. Matter, 14, No. 44: 11167–11171 (2002). Crossref
  250. R. Taylor, G. Cort, and J. Willis, Internal Magnetic Fields in HCP-Iron, J. Appl. Phys., 53, No. 11: 8199–8202 (1982). Crossref
  251. S. Merkel, A. Goncharov, H. Mao, P. Gillet, and R. Hemley, Raman Spectroscopy of Iron to 152 Gigapascals: Implications for Earth's Inner Core, Science, 288: 1626–1629 (2000). Crossref
  252. G. Steinle-Neumann, L. Stixrude, R. E. Cohen, and B. Kiefer, Evidence of Local Magnetic Order in HCP Iron from Raman Mode Splitting, http://arxiv.org/PS_cache/cond-mat/pdf/0111/0111487v1.pdf (2001).
  253. K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, and K. Amaya, Superconductivity in the Non-Magnetic State of Iron under Pressure, Nature, 412: 316–317 (2001). Crossref
  254. M. Stearns, Origin of the Hyperfine Fields in Pure Fe and at Solute Atoms in Fe, Phys. Rev. B, 4, No. 11: 4081–4091 (1971). Crossref
  255. I. Vincze and G. Grüner, Temperature Dependence of the Hyperfine Field at Iron Atoms near 3d Impurities, Phys. Rev. Lett., 28, No. 3: 178–181 (1972). Crossref
  256. I. Vincze and I. Campbell, Mössbauer Measurements in Iron Based Alloys with Transition Metals J. Phys. F: Metal Phys., 3: 647–663 (1973). Crossref
  257. P. C. Riedi, The Temperature Dependence of the Local Magnetization of FeNi Alloys, Phys. Lett. A, 33, No. 5: 273–274 (1970). Crossref
  258. P. C. Riedi, Temperature Dependence of the Hyperfine Field and Hyperfine Coupling Constant of Iron, Phys. Rev. B, 8, No. 11: 5243–5246 (1973). Crossref
  259. B. Fultz and J. W. Morris, Jr., Temperature Dependence of Hyperfine Magnetic Fields in Fe–Ni, Phys. Rev. B, 34, No. 7: 4480–4489 (1986). Crossref
  260. I. I. Mazin, D. A. Papaconstantopoulos, and M. J. Mehl, Superconductivity in Compressed Iron: Role of Spin Fluctuations, Phys. Rev. B, 65, No. 10: 100511(R)-1–100511(R)-4 (2002).
  261. A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Correlated Metals and the LDA+U Method, Phys. Rev. B, 67, No. 15: 153106-1–153106-4 (2003). Crossref
  262. R. Moessner and J. T. Chalker, Properties of a Classical Spin Liquid: The Heisenberg Pyrochlore Antiferromagnet, Phys. Rev. Lett., 80, No. 13: 2929–2932 (1998). Crossref
  263. S. Dunsiger, J. S. Gardner, J. A. Chakhalian, A. L. Cornelius, M. Jaime, R. F. Kiefl, R. Movshovich, W. A. MacFarlane, R. I. Miller, J. E. Sonier, and B. D. Gaulin, Low Temperature Spin Dynamics of the Geometrically Frustrated Antiferromagnetic Garnet Gd3Ga5O12, Phys. Rev. Lett., 85, No. 16: 3504–3507 (2000). Crossref
  264. S. V. Tyablikov, Metody kvantovoy teorii magnetizma (Moskva: Nauka: 1975).
  265. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, The Fe–Ni (Iron–Nickel) System, J. Phase Equilibria, 12, No. 3: 288–312 (1991). Crossref
  266. F. Bley, Z. Amilius, and S. Lefebvre, Wave Vector Dependent Kinetics of Short-Range Ordering in 62Ni0.765Fe0.235, Studied by Neutron Diffuse Scattering, Acta Metall., 36, No. 7: 1643–1652 (1988). Crossref
  267. I. Ya. Georgieva, O. P. Maksimova, O vliyanii ugleroda na tochku Kyuri austenita zhelezonikelevykh splavov, Fiz. Met. Metalloved., 24, No. 3: 574–576 (1967).
  268. V. M. Nadutov, Ye. O. Svystunov, T. V. Yefimova, and A. V. Gorbatov, Material Research in Atomic Scale by Mössbauer Spectroscopy (Eds. M. Mashlan, M. Miglierini, and P. Schaal) (NATO Science Series, II. Mathematics, Physics and Chemistry) (Dordrecht: Kluwer Academic Publishers: 2003), vol. 94, p. 105–116.
  269. V. M. Nadutov, Ye. O. Svistunov, Vpliv C na termichne rozshirennya GTsK Fe–Ni splaviv, Metallofiz. Noveishie Tekhnol., 24, No. 12: 1639–1649 (2002).
  270. M. A. Krivoglaz, Diffuznoe rasseyanie rentgenovskikh luchey i neytronov na fluktuatsionnykh neodnorodnostyakh v neideal'nykh kristallakh (Kiev: Naukova dumka: 1984).
  271. P. C. Clapp and S. C. Moss, Correlation Functions of Disordered Binary Alloys. I, Phys. Rev., 142: 418 (1966). Crossref
  272. P. C. Clapp and S. C. Moss, Correlation Functions of Disordered Binary Alloys. II, Phys. Rev., 171: 754 (1968). Crossref
  273. R. Brout, Phase Transitions (New York–Amsterdam: University of Brussels: 1965). Crossref
  274. P. C. Clapp and S. C. Moss, Correlation Functions of Disordered Binary Alloys. III, Phys. Rev., 171: 764 (1968). Crossref
  275. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Semi-Empirical Parameterization of Interatomic Interactions and Kinetics of the Atomic Ordering in Ni–Fe–C Permalloys and Elinvars, Defect and Diffusion Forum, 280–281: 29–78 (2008).
  276. A. A. Smirnov, I. A. Stoyanov, Vliyanie vnedrennykh atomov na uporyadochenie splava, Fiz. Met. Metalloved., 2, No. 3: 524–530 (1956).
  277. V. N. Bugaev, Z. A. Matysina, M. I. Milyan, V. A. Tatarenko, Uporyadochenie atomov v binarnom splave zameshcheniya s GTsK reshetkoy pri nalichii primesi vnedreniya, Izv. vuzov. Fizika. 26, No. 7: 90–96 (1983).
  278. M. A. Krivoglaz, Diffuse Scattering of X-Rays and Neutrons—Fluctuations in Solids (Berlin: Springer: 1996). Crossref
  279. V. A. Tatarenko, T. M. Radchenko, Parametri kinetiki relaksatsii bliz'kogo poryadku y vzaiemodii atomiv v binarnikh GTsK-tverdikh rozchinakh zamishchennya za danimi pro chasovu evolyutsiyu difuznogo rozsiyannya viprominyuvan', Metallofiz. Noveishie Tekhnol., 24, No. 10: 1335–1350 (2002).
  280. V. A. Tatarenko and T. M. Radchenko, Diffusive Relaxation of Parameters of the Short-Range Order and Time Evolution of Diffuse Scattering of Radiations in Solid Solutions, Defect and Diffusion Forum, 194–199, Part 1: 183–188 (2001).
  281. V. A. Tatarenko and T. M. Radchenko, Wave-Vector Dependent Kinetics of Short-Range Ordering in Binary Solid Solutions Studied by Diffuse Scattering of Radiation, Visnik Cherkas'kogo universitetu. Ser.: Fiziko-matematichni nauki, 37–38: 249–255 (2001–2002).
  282. T. M. Radchenko, Short-Range Order Kinetics and Evolution of the Radiation-Scattering Pattern and Electrical Resistivity in Close-Packed Solid Solutions (Thesis for Cand. of Phys.-Math. Sciences—PhD) (Kyiv: G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine: 2003).
  283. M. M. Naumova, S. V. Semenovskaya, Ya. S. Umanskiy, Izuchenie elementarnykh aktov diffuzii metodom diffuznogo rasseyaniya rentgenovskikh luchey, Fiz. Tverd. Tela, 12, No. 4: 975–982 (1970).
  284. S. M. Bokoch, N. P. Kulish, V. A. Tatarenko, T. M. Radchenko, Kinetika blizhnego uporyadocheniya tverdykh rastvorov zameshcheniya (po dannym o rasseyanii raznogo tipa voln). II. Parametry atomnoy mikrodiffuzii v GTsK-Ni–Mo, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541–558 (2004).
  285. T. M. Radchenko, V. A. Tatarenko, S. M. Bokoch, and M. P. Kulish, Microscopic Approach to the Evaluation of Diffusion Coefficients for Substitutional F.C.C. Solid Solutions, Proc. of the 1st Int'l Conf. on Diffusion in Solids and Liquids—'DSL-2005' (Aveiro, Portugal, 6–8 July, 2005) (Eds. A. Öchsner, J. Grácio, and F. Barlat) (Aveiro: University of Aveiro: 2005). vol. 2, p. 591–596.
  286. S. M. Bokoch, M. P. Kulish, T. M. Radchenko, and V. A. Tatarenko, Parameters of Microdiffusion in F.C.C.-Ni–Mo Solid Solution, Proc. of the 1st Int'l Conf. on Diffusion in Solids and Liquids—"DSL-2005" (Aveiro, Portugal, 6–8 July, 2005) (Eds. A. Öchsner, J. Grácio, and F. Barlat) (Aveiro: University of Aveiro: 2005). vol. 1, p. 57–62.
  287. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Calculation of Diffusivities in Ordering F.C.C. Alloy by the Kinetic Data about Short- and Long-Range Order Parameter's Relaxation, Diffusion Fundamentals, 2: 57.1–57.2 (2005) (Open-Access Online Journal for the Basic Principles of Diffusion Theory, Experiment and Application: http://www.uni-leipzig.de/diffusion/journal/pdf/volume2/diff_fund_2(2005)57.pdf).
  288. A. Caplain and W. Chambron, Energies de Formation et de Migration des Lacunes dans Les Alliages Fer–Nickel de Structure C.F.C. par la Methode de l'Anisotropie Magnetique Induite, Acta metall., 25, No. 9: 1001–1011 (1977) (in French). Crossref
  289. L.-Q. Chen and A. G. Khachaturyan, Formation of Virtual Ordered States Along a Phase-Decomposition Path, Phys. Rev. B, 44, No. 9: 4681–4684 (1991). Crossref
  290. L. Q. Chen and A. G. Khachaturyan, Computer Simulation of Simultaneous Ordering, Decomposition and Strain-Induced Coarsening, Kinetics of Ordering Transformations in Metals (Eds. H. Chen and V. K. Vasudevan) (Warrendale, Pennsylvania: TMS: 1992), pp. 197–206.
  291. L.-Q. Chen and A. G. Khachaturyan, Kinetics of Virtual Phase Formation During of Ordered Intermetallics, Phys. Rev. B, 46, No. 10: 5899–5905 (1992). Crossref
  292. R. Poduri and L.-Q. Chen, Computer Simulation of the Kinetics of Order–Disorder and Phase Separation During Precipitation of delta-prime (Al3Li) in Al–Li Alloys, Acta Mater., 45, No. 1: 245–255 (1997). Crossref
  293. R. Poduri and L.-Q. Chen, Computer Simulation of Atomic Ordering and Compositional Clustering in the Pseudobinary Ni3Al–Ni3V System, Acta Mater., 46, No. 5: 1719–1729 (1998). Crossref
  294. Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Field Kinetic Model and Computer Simulation of Precipitation of L12 Ordered Intermetallics From F.C.C. Solid Solution, Acta Mater., 46, No. 9: 2983–3001 (1998). Crossref
  295. G. Rubin and A. G. Khachaturyan, Three-Dimensional Model of Precipitation of Ordered Intermetallics, Acta Mater., 47, No. 7: 1995–2002 (1999). Crossref
  296. M. Nastar and V. Barbe, A Self-Consistent Mean Field Theory for Diffusion in Alloys, Faraday Discuss., 134: 331–342 (2007). Crossref
  297. V. I. Goman'kov, I. M. Puzey, M. N. Rukosuev, Protsessy uporyadocheniya v Ni3Fe, Respublikanskiy mezhvedomstvennyy sbornik «Metallofizika». No. 20: Uporyadochenie atomov i ego vliyanie na svoystva splavov (Kiev: Naukova dumka: 1968), ss. 105–108.
  298. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Diffusivities and Kinetics of Short-Range and Long-Range Orderings in Ni–Fe Permalloys, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699–1720 (2006).
  299. T. M. Radchenko, V. A. Tatarenko, and H. Zapolsky, Diffusional Atomic-Ordering Kinetics of Close-Packed Solid Solutions: Models for L12 and D019 Phases, Diffusion Fundamentals, 6: 30.1–30.2 (2007) (Open-Access Online Journal for the Basic Principles of Diffusion Theory, Experiment and Application: http://www.uni-leipzig.de/diffusion/journal/pdf/volume6/diff_fund_6(2007)30.pdf).
  300. T. M. Radchenko and V. A. Tatarenko, Atomic-Ordering Kinetics and Diffusivities in Ni–Fe Permalloy, Defect and Diffusion Forum, 273–276: 525–530 (2008).
  301. R. Hazen and A. Navrodsky, Effects of Pressure on Order–Disorder Reactions, American Mineralogist, 81: 1021–1035 (1996). Crossref
  302. A. K. Kanyuka, V. I. Ryzhkov, A. A. Smirnov, O vliyanii davleniya na uporyadochenie splavov s granetsentrirovannoy kubicheskoy reshetkoy tipa AuCu3, Respublikanskiy mezhvedomstvennyy sbornik «Metallofizika». Ser.: Fazovye prevrashcheniya v metallakh i splavakh (Kiev: Naukova dumka: 1965), ss. 22–29.
  303. V. V. Geychenko, A. K. Kanyuka, A. A. Smirnov, Teoriya uporyadocheniya splavov tipa Au–Cu, uchityvayushchaya zavisimost' parametrov reshetki ot davleniya, sostava i parametra dal'nego poryadka, Fiz. Met. Metalloved., 31, No. 3: 469–477 (1971).
  304. A. K. Kanyuka, A. A. Smirnov, Teoriya uporyadocheniya splavov tipa Au–Cu i Cu–Pt pod davleniem, Dokl. IV Vsesoyuznogo soveshch. po uporyadocheniyu atomov i ego vliyaniyu na svoystva splavov (Tomsk: TGU: 1974), ch. I, ss. 103–108.
  305. A. K. Kanyuka, V. I. Ryzhkov, A. A. Smirnov, Teoriya uporyadocheniya splavov tipa CuPt pod davleniem, Fiz. Met. Metalloved., 40, No. 5: 950–957 (1975).
  306. A. K. Kanyuka, Vliyanie staticheskikh napryazheniy na uporyadochenie splavov tipa AuCu, Fiz. Met. Metalloved., 41, No. 5: 920–924 (1976).
  307. A. K. Kanyuka, Vliyanie staticheskikh napryazheniy na uporyadochenie splavov tipa CuPt, Fiz. Met. Metalloved., 43, No. 3: 493–497 (1977).
  308. A. K. Kanyuka, O vozmozhnom vide fazovoy diagrammy davlenie–temperatura splava CuPt, Ukrainian Physical Journal, 22, No. 9: 1566–1568 (1977).
  309. V. V. Geychenko, A. K. Kanyuka, V. I. Ryzhkov, and A. A. Smirnov, The Effect of Pressure on Phase Diagrams of Ordering Alloys and on Some Features of Order–Disorder Transition, High Temperature–High Pressure, 9: 640–641 (1977).
  310. A. K. Kanyuka, Vliyanie staticheskikh napryazheniy na uporyadochenie splavov tipa CrNi2, Fiz. Met. Metalloved., 45, No. 3: 589–598 (1978).
  311. V. I. Ryzhkov, A. A. Smirnov, O vliyanii davleniya na uporyadochenie splavov, Fiz. Met. Metalloved., 18, No. 5: 670–677 (1964).
  312. Z. A. Matysina, A. A. Smirnov, K teorii uporyadocheniya splavov s parametrom reshetki, zavisyashchim ot sostava i stepeni poryadka, Voprosy fiziki metallov i metallovedeniya (Kiev: Naukova dumka: 1964), ss. 136–147.
  313. A. K. Kanyuka, A. A. Smirnov, Teoriya vliyaniya davleniya na uporyadochenie splavov, uchityvayushchaya zavisimost' ob'yema ot stepeni dal'nego poryadka, Fiz. Met. Metalloved., 24, No. 6: 989–997 (1967).
  314. M. C. Frandzblau and R. B. Gordon, The Order–Disorder Transformation in Cu3Au at High Pressure, J. Appl. Phys., 38, No. 1: 103–110 (1967). Crossref
  315. M. F. Zhorovkov, Simmetriynyy analiz sverkhstruktur zameshcheniya v geksagonal'noy plotnoupakovannoy reshetke, Izvestiya vuzov. Fizika (Dep. v VINITI 11.03.91 No. 1023-B91) (Tomsk: 1991).
  316. M. F. Zhorovkov, D. L. Fuks, and V. E. Panin, The Electronic Structure and Phase Diagrams of Binary Alloys with Complex Lattices: I. The Application of Static Concentration Waves and Pseudopotential Methods for Calculating the Phase Diagrams, Phys. Stat. Sol. B, 68, No. 1: 379–385 (1975). Crossref
  317. M. I. Solov'eva, D. M. Shtern, Teoreticheskoe predskazanie struktur GPU binarnykh uporyadochennykh faz, Izv. vuzov. Fizika, No. 6: 90–94 (1990).
  318. K. S. Barret, T. B. Massal'ski, Struktura metallov. (Moskva: Metallurgiya: 1984) (Russian translation).
  319. T. M. Radchenko, V. A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-Thermodynamic Description of the Order–Disorder Transformation of D019-Type Phase in Ti–Al Alloy, J. of Alloys and Compounds, 452: 122–126 (2008). Crossref
  320. T. M. Radchenko, V. A. Tatarenko, and H. Zapolsky, Kinetics of D019-Type Long-Range Atomic Ordering in H.C.P. Substitutional Alloys, Fundamental'nye problemy sovremennogo materialovedeniya, 4, No. 1: 104–110 (2007).
  321. T. M. Radchenko, V. A. Tatarenko, and H. Zapolsky, Statistical-Thermodynamics and Ordering Kinetics of D019-Type Phase: Application of the Models for H.C.P.-Ti–Al Alloy, Solid State Phenomena, 138: 283–302 (2008). Crossref
  322. V. A. Tatarenko and T. M. Radchenko, The Application of Radiation Diffuse Scattering to the Calculation of Phase Diagrams of F.C.C. Substitutional Alloys, Intermetallics, 11, Nos. 11–12: 1319–1326 (2003). Crossref
  323. V. A. Tatarenko, T. M. Radchenko, V. M. Nadutov, Parametri mizhatomovoi vzaiemodii v GTsK-splavi zamishchennya Ni–Fe za eksperimental'nimi danimi pro magnitni kharakteristiki ta rivnovazhni znachennya intensivnosti difuznogo rozsiyannya viprominyuvan', Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303–1319 (2003).
  324. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Phase Stability in the Fe–Ni System: Investigation by First-Principles Calculations and Atomistic Simulations, Acta Mater., 53, No. 15: 4029–4041 (2005). Crossref
  325. R. R. Zope and Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti–Al System, Phys. Rev. B, 68: 024102-1–024102-14 (2003). Crossref
  326. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Embedded-Atom Potential for B2-NiAl, Phys. Rev. B, 65, No. 22: 224114 (2002). Crossref
  327. V. I. Ryzhkov, A. A. Smirnov, Vliyanie davleniya na uporyadochenie v splavakh s geksagonal'noy plotnoupakovannoy kristallicheskoy reshetkoy, Respublikanskiy mezhvedomstvennyy sbornik «Metallofizika». No. 20: Uporyadochenie atomov i ego vliyanie na svoystva splavov (Kiev: Naukova dumka: 1968), pp. 83–87.
  328. Z. A. Matisina, A. A. Smirnov, Do teorii uporyadkuvannya splaviv z geksagonal'noyu shchil'noupakovanoyu kristalichnoyu reshitkoyu, Ukrainian Physical Journal, 5, No. 4: 458–471 (1960).
  329. V. V. Geychenko, V. I. Ryzhkov, Teoriya uporyadocheniya splavov s geksagonal'noy plotnoupakovannoy reshetkoy, Vopr. fiziki metallov i metallovedeniya, No. 18: 155–162 (1964).
  330. N. P. Grazhdankina, A. A. Smirnov, Yu. S. Bersenev, Issledovanie vliyaniya vysokogo davleniya na uporyadochenie splavov MgCd3 i CdMg3, Respublikanskiy mezhvedomstvennyy sbornik 'Metallofizika'. No. 20: Uporyadochenie atomov i ego vliyanie na svoystva splavov (Kiev: Naukova dumka: 1968), pp. 88–90.
  331. N. P. Grazhdankina, Osobennosti baricheskogo koeffitsienta elektrosoprotivleniya veshchestv so spinovym uporyadocheniem, ZhETF, 48, No. 5: 1257–1261 (1965).
  332. V. V. Geychenko, V. I. Rizhkov, Teoriya vporyadkuvannya v splavakh z granetsentrovanimi kubichnimi gratami, Ukrainian Physical Journal, 8, No. 11: 1223–1233 (1963).
  333. A. K. Kanyuka, A. A. Smirnov, O vliyanii davleniya na uporyadochenie splavov tipa Fe–Al, Ukrainian Physical Journal, 14, No. 10: 1626–1629 (1969).
  334. E. Z. Valiev, Fenomenologicheskaya teoriya magnitouprugogo vzaimodeystviya v invarakh i elinvarakh, Uspekhi Fiz. Nauk., 161, No. 8: 87128 (1991).
  335. V. Yu. Bodryakov, A. A. Povzner, Invarnoe i kovarnoe povedenie prostykh ferromagnetikov: termodinamicheskoe modelirovanie, Zhurn. tekhn. fiz., 77, No. 2: 65–71 (2007).
  336. V. Yu. Bodryakov, Elinvarnoe povedenie prostykh ferromagnetikov: termodinamicheskoe modelirovanie, Zhurn. tekhn. fiz., 77, No. 8: 54–61 (2007).
  337. K. C. Russell and F. A. Garner, Radiation as a Tool in Understanding Phase Transformations, Metallurgical and Materials Transactions A, 21, No. 4: 1073–1082 (1990). Crossref
  338. K. C. Russel and F. A. Garner, Thermal and Irradiation-Induced Phase Separation in Fe–Ni Based Invar-Type Alloys, Metallurgical and Materialals Transaction A, 23, No. 7: 1963–1976 (1992).
  339. K. C. Russell and F. A. Garner, Theoretical Analysis of Phase Transformations in Fe-Ni Invar-Type Alloys, Proceedings of TMS Symposium on Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Las Vegas, NV: 1989), pp. 25–46.
  340. E. F. Wassermann, Ferromagnetic Materials V (Eds. K. H. J. Buschow and E. P. Wohlfarth) (Amsterdam: North Holland: 1990), pp. 237–321.
  341. A. Wiedenmann, W. Wagner, and H. Wollenberger, Metastability of Fe–34 at.% Ni Invar Alloys Above 600°C, Journal of the Less-Common Metals, 145: 47–53 (1988). Crossref
  342. C. Abromeit and G. Ananthakrishna, Fe–Ni Invar Alloy: an Example of Fractal Decomposition? Voprosy atomnoy nauki i tekhniki. Ser.: Fizika radiatsionnykh povrezhdeniy i radiatsionnoe materialovedenie, No. 3(86): 32–37 (2005).
  343. S. Kachi and H. Asano, Concentration Fluctuations and Anomalous Properties of the Invar Alloy J. Phys. Soc. Japan, 27, No. 3: 536–541 (1969). Crossref
  344. E. I. Kondorsky and V. L. Sedov, Antiferromagnetism of Iron in Face-Centered Crystalline Lattice and the Causes of Anomalies in Invar Physical Properties, J. Appl. Phys., 31: 331S (1960). Crossref
  345. Y. Tanji, H. Moriya, and Y. Nakagawa, Anomalous Concentration Dependence of Thermoelectric Power of Fe–Ni (FCC) Alloys at High Temperatures, J. Phys. Soc. Japan, 45, No. 4: 1244–1248 (1978). Crossref
  346. Y. Tanji, Y. Nakagawa, Y. Saito, K. Nishimura, and K. Nakatsuka, Anomalous Thermodynamic Properties of Iron–Nickel (F.C.C.) Alloys, Phys. Stat. Sol. (a), 56, No. 2: 513–519 (1979). Crossref
  347. E. Becker (Thesis of Disser. for Ph.D.) (Duisburg University: 1990).
  348. O. Kubaschewski, K. N. Geiger, and K. Hack, The Thermochemical Properties of Iron–Nickel Alloys, Z. Metallkunde, 68, No. 5: 337–341 (1977).
  349. A. V. Jain and M. E. Lipschutz, Shock History of Iron Meteorites and Their Parent Bodies: A Review, Chem. Erde, 30: 199–216 (1971).
  350. J. I. Goldstein, D. B. Williams, J. Zhang, and R. Clarke, Invar Alloys: Information from the Study of Iron Meteorites, Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Eds. K. C. Russell and D. F. Smith) (Warrendale, USA: The Minerals, Metals & Materials Society: 1990).
  351. R. S. Scorzelli, I. S. Azevedo, J. Danon, and M. A. Meyers, Mössbauer Study of Shock-Induced Effect in the Ordered Alloy Fe50Ni50 in Meteorites, J. Phys. F: Metal Phys., 17: 1993–1997 (1987). Crossref
  352. J. Danon, R. B. Scorzelli, I. Souza-Azevedo, J. Laugier, and A. Chamberod, Santa Catharina Meteorite and Phase Composition of Irradiated Fe–Ni Invar Alloys, Nature, 284: 537–538 (1980). Crossref
  353. R. B. Scorzelli, R. A. Pereira, C. A. C. Perez, and A. A. R. Fernandes, Phase Composition and Structure of Fe–Ni Alloys in a Unique Antarctic Meteorite Yamato, Hyperfine Interactions, 94, No. 1: 2343–2347 (2005). Crossref
  354. J. Danon, R. B. Scorzelli, I. Souza Azevedo, and M. Christophe-Michel-Lévy, Iron–Nickel Superstructure in Metal Particles of Chondrites, Nature, 281: 469–471 (1979). Crossref
  355. J. Danon, R. B. Scorzelli, and I. S. Azevedo, Mössbauer Studies of the Fe–Ni Ordered Phase (Superstructure L10) in Meteorites, J. de Phys. Colloq., 41, No. C1: 363–364 (1980). Crossref
  356. J. Danon, R. B. Scorzelli, I. S. Azevedo et al., C. r. hebd. Séanc. Acad. Sci. Paris, 287: 199–201 (1978).
  357. J. F. Albertsen, G. B. Jensen, and J. M. Knudsen, Structure of Taenite in Two Iron Meteorites, Nature, 273: 453–454 (1978). Crossref
  358. J. Danon, R. Scorzelli, I. Souzaazevedo, W. Curvello, J. F. Albertsen, and J. M. Knudsen, Iron–Nickel 50–50 Superstructure in the Santa-Catharina Meteorite, Nature, 277, No. 5694: 283–284 (1979). Crossref
  359. Q. Li, A. Wiedenmann, and H. Wollenberger, Fractal Morphologies from Decomposition of Fe–Ni-Invar Alloys, J. Mater. Res., 12, No. 1: 83–92 (1997). Crossref
  360. F. A. Garner, H. R. Brager, R. A. Dodd, and T. Lauritzen, Ion-Induced Spinodal-Like Decomposition of Fe–Ni–Cr Invar Alloys, J. Nucl. Inst. Meth., B16, No. 2, 3: 244–250 (1986).
  361. C. Abromeit and K. Krishan, Influence of Irradiation on the Spinodal Decomposition of a Concentrated Alloy, Acta Metall., 34, No. 8: 1515–1524 (1986). Crossref
  362. C. Abromeit and G. Martin, Dynamical Phase Changes Induced by Point Defect Fluxes under Irradiation, J. Nucl. Mater., 271–272: 251–255 (1999). Crossref
  363. A. Wiedenmann, Q. Li, W. Wagner, and W. Petry, Fractal Aggregation in Fe–Ni Alloys During High Temperature Annealing, Physica B, 180–181: 793–794 (1992). Crossref
  364. A. Wiedenmann, W. Wagner, and H. Wollenberger, Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Eds. K. C. Russell and D. F. Smith) (Warrendale, USA: The Minerals, Metals & Materials Society: 1990), p. 47.
  365. A. Wiedenmann, W. Wagner, and H. Wollenberger, Thermal Decomposition of Fe–34 at.% Ni between 625°C and 725°C, Scripta Metall., 23, No. 4: 603–605 (1989). Crossref
  366. S. E. Danilov, V. L. Arbuzov, V. V. Sagaradze, V. A. Shabashov, Voprosy atomnoy nauki i tekhniki. Ser.: Fizika radiatsionnykh povrezhdeniy i radiatsionnoe materialovedenie, No. 5(88): 22–25 (2005).
  367. F. A. Garner, J. M. McCarthy, K. C. Russell, and J. J. Hoyt, Spinodal-Like Decomposition of Fe–35Ni and Fe–Cr–35Ni Alloys During Irradiation or Thermal Aging, J. Nucl. Mater., 205: 411–425 (1993). Crossref
  368. R. A. Dodd, F. A. Garner, J.-J. Kai, T. Lauritzen, and W. G. Johnston, Spinodal-Like Decomposition and Swelling-Induced by Ion Irradiation in Simple Fe–Ni and Fe–Ni–Cr Alloys, Thirteenth International Symposium 'Effects of Radiation on Materials'. Part 1: Radiation-Induced Changes in Microstructure—ASTM STP 955 (Eds. F. A. Garner, N. H. Packan, and A. S. Kumar) (Philadelphia, PA: ASTM: 1987), pp. 788–804.
  369. F. A. Garner, H. R. Brager, and J. M. McCarthy, Neutron-Induced Spinodal-Like Decomposition of Fe–Ni and Fe–Ni–Cr Alloys, Thirteenth International Symposium 'Effects of Radiation on Materials'. Part 1: Radiation-Induced Changes in Microstructure—ASTM STP 955 (Eds. F. A. Garner, N. H. Packan, and A. S. Kumar) (Philadelphia, PA: ASTM: 1987), pp. 775–787.
  370. Ya. I. Frenkel', Vvedenie v teoriyu metallov (Leningrad: Nauka: 1972).
  371. M. A. Krivoglaz, Termodinamicheski ravnovesnye geterogennye sostoyaniya splavov, Fiz. Met. Metalloved., 66, No. 6: 1045–1072 (1988).
  372. V. I. Yukalov, Phase Transitions and Heterophase Fluctuations, Physics Reports, 208, No. 6: 395–489 (1991). Crossref
  373. A. K. Kanyuka, Teoriya uporyadocheniya splavov s OTsK reshetkoy tipa beta-latuni pod davleniem s uchetom korrelyatsii, Fiz. Met. Metalloved., 31, No. 3: 478–485 (1971).
Cited By (6)
  1. S. M. Bokoch and V. A. Tatarenko, Usp. Fiz. Met. 11, 413 (2010).
  2. P. P. Gorbyk, M. V. Abramov, I. V. Dubrovin, S. M. Makhno et al., Usp. Fiz. Met. 18, 59 (2017).
  3. I. V. Vernyhora, S. M. Bokoch and V. A. Tatarenko, Usp. Fiz. Met. 11, 313 (2010).
  4. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 17, 375 (2016).
  5. I. V. Vernyhora, V. A. Tatarenko and S. M. Bokoch, ISRN Thermodynamics 2012, 1 (2012).
  6. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).