Strength and Plasticity of the Sintered Materials on the Base of a Titanium Nanolaminate Ti$_{3}$SiC$_{2}$

S. O. Firstov, Eh. P. Pechkovsky, V. F. Gorban’

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 02.06.2006. Download: PDF

By the example of one of the most investigated ternary compounds of a new class of materials—nanolaminates—titanium silicon carbide Ti$_{3}$SiC$_{2}$ fabricated by the method of reactionary sintering of a powder mixture of elements and binary compounds, the system analysis and generalization of an influence of the investigated structural and phase changes occurring in this material at various kinds of processing on regularities, features and mechanisms of deformation, strengthening and fracture processes within the temperature interval of 20–1300°C are executed. Opportunities of an increase of the plasticity, strength and fracture characteristics of Ti$_{3}$SiC$_{2}$ in a porous state in comparison with a compact one are determined. As shown, the decrease of strength of porous materials can be compensated appreciably, and in some cases, it is exceeded by the use of some factors, which are as follows: refinement of grain structure, high-temperature thermomechanical treatment, fabrication of two-phase in-situ Ti$_{3}$SiC$_{2}$/TiC composite, nitriding of a high-porous material. Basic physics of a simultaneous increase of the characteristics of low-temperature plasticity, high-temperature strength and fracture stress for this material in compact and porous states is developed.

Keywords: Ti$_{3}$SiC$_{2}$ titanium siliceous carbide, structural state, grain structure, thermomechanical treatment, Ti$_{3}$SiC$_{2}$/TiC two-phase $in-situ$ composite, nitriding, mechanical properties.

PACS: 62.20.Fe, 81.05.Je, 81.05.Ni, 81.05.Rm, 81.20.Ev, 81.20.Wk, 81.40.Lm

DOI: https://doi.org/10.15407/ufm.07.04.243

Citation: S. O. Firstov, Eh. P. Pechkovsky, and V. F. Gorban’, Strength and Plasticity of the Sintered Materials on the Base of a Titanium Nanolaminate Ti$_{3}$SiC$_{2}$, Usp. Fiz. Met., 7, No. 4: 243—281 (2006) (in Russian), doi: 10.15407/ufm.07.04.243


References (51)  
  1. M. W. Barsoum, Prog. Solid St. Chem., 28: 201 (2000). Crossref
  2. M. W. Barsoum, T. El-Raghy, and M. Radovic, Interceram., 49, No. 4: 226 (2000).
  3. W. Jeitschko, H. Nowotny, and F. Benesovsky, Monatsh. Chem., 94: 672 (1963).
  4. W. Jeitschko and H. Nowotny, Monatsh. Chem., 98: 329 (1967).
  5. H. Nowotny, Prog. Solid. State Chem., 2: 27 (1971). Crossref
  6. R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, J. Eur. Ceram. Soc., 5: 283 (1989).
  7. J. Lis, R. Pampuch, J. Piekarczyk, and L. Stobierski, Ceramics Inter., 19: 219 (1993).
  8. T. Okano, T. Yano, and T. Iseki, Trans. Met. Soc. Jpn., 14A: 597 (1993).
  9. J. F. Li, W. Pan, F. Sato, and R. Watanabe, Acta Mater., 49: 937 (2001). Crossref
  10. N. P. Brodnikovskiy, M. P. Burka, D. G. Verbilo et al., Materialy Mezhd. konf. «Peredovaya keramika — tret'emu tysyacheletiyu» (Kiev: 2001), s. 115.
  11. N. P. Brodnikovskiy, M. P. Burka, D. G. Verbilo et al., Materialy Mezhd. konf. «Peredovaya keramika — tret'emu tysyacheletiyu» (Kiev: 2001), s. 116.
  12. S. A. Firstov, I. I. Ivanova, E. P. Pechkovskiy, Materialy Mezhd. konf. «Materialy i pokrytiya v ekstremal'nykh usloviyakh: issledovaniya, primenenie, ekologicheski chistye tekhnologii proizvodstva i utilizatsii izdeliy» (Katsiveli–Ponizovka, ARK, Ukraina: 2002), p. 260.
  13. S. A. Firstov, I. I. Ivanova, E. P. Pechkovskiy, Materialy Mezhd. konf. «Nauka o materialakh na rubezhe vekov: dostizheniya i vyzovy vremeni» (Kiev: 2002), p. 504.
  14. S. A. Firstov and E. P. Pechkovsky, Ceramics, Polish Ceramic Bulletin, 69: 95 (2002).
  15. S. A. Firstov and E. P. Pechkovsky, Proc. Inter. Conf. 'Deformation and Fracture in Structural PM Materials' (Stara Lesna, Slovak Republic: 2002), p. 67.
  16. N. P. Brodnikovskiy, M. P. Burka, D. G. Verbilo et al., Poroshk. metall., No. 7/8: 109 (2003).
  17. N. P. Brodnikovskiy, E. P. Pechkovskiy, S. A. Firstov et al., Elektronnaya mikroskopiya i prochnost' materialov, 12: 77 (2003).
  18. S. A. Firstov and E. P. Pechkovsky, Proc. Intern. Conf. 'Fractography' (Stara Lesna, Slovac Republic: 2003), p. 1.
  19. N. P. Brodnikovskiy, E. P. Pechkovskiy, S. A. Firstov et al., Metallofiz. noveyshie tekhnol., 25, No. 9: 1179 (2003).
  20. V. F. Gorban', E. P. Pechkovskiy, S. A. Firstov et al., Trudy Mezhd. konf. «Noveyshie tekhnologii v poroshkovoy metallurgii i keramike» (Kiev: 2003), s. 373.
  21. V. F. Gorban', E. P. Pechkovskiy, S. A. Firstov et al., Trudy Mezhd. konf. «Noveyshie tekhnologii v poroshkovoy metallurgii i keramike» (Kiev: 2003), s. 416.
  22. S. A. Firstov and E. P. Pechkovsky, Science of Sintering, 36, No. 1: 11 (2004).
  23. S. A. Firstov and E. P. Pechkovsky, Proc. Powder Metallurgy World Congress (Vienna, Austria: 2004), vol. 4, p. 730.
  24. V. F. Gorban', E. P. Pechkovskiy, S. A. Firstov et al., Poroshkovaya metallurgiya, No. 3/4: 93 (2005).
  25. V. F. Gorban', E. P. Pechkovskiy, S. A. Firstov, A. V. Samelyuk, Metallofiz. Noveishie Tekhnol., 27, No. 3: 335 (2005).
  26. S. A. Firstov, E. P. Pechkovsky, I. I. Ivanova, N. P. Brodnikovsky et al., High Temperature Materials and Processes, 25, No. 1–2: 47 (2006).
  27. V. F. Gorban', E. P. Pechkovskiy, S. A. Firstov, Metallofiz. noveyshie tekhnol., 28, No. 1: 67 (2006).
  28. S. O. Firstov, E. P. Piechkovs'kiy, I. I. Ivanova, Zb. DFFD Ministerstva osviti i nauki Ukraini «Fundamental'ni oriientiri nauki. Khimiya i materialoznavstvo» (Kiiv: Akademperiodika: 2005), s. 158.
  29. I. S. Konoplyuk, T. Abe, T. Uchimoto, and T. Takagi, Materials Letters, 59: 2342 (2005).
  30. Z. F. Zhang, Z. M. Sun, H. Hashimoto, and T. Abe, J. of Alloys and Compounds, 352: 283 (2003). Crossref
  31. H. Li, D. Chen, J. Zhou, J. H. Zhao, and L. H. He, Materials Letters, 58: 1741 (2004).
  32. H. B. Zhang, Y. C. Zhou, Y. W. Bao, and M. S. Li, Acta Materialia, 52: 3631 (2004). Crossref
  33. Z. Sun, J. Zhou, D. Music, R. Ahuja, and J. M. Schneider, Scripta Materialia, 54: 105 (2006). Crossref
  34. Z. M. Sun, A. Murugaiah, T. Zhen, A. Zhou, and M. W. Barsoum, Acta Materialia, 53: 4359 (2005). Crossref
  35. W. B. Zhou, B. C. Mei, and J. Q. Zhu, Materials Letters, 59: 1547 (2005).
  36. S. S. Hwang, S. W. Park, and T. W. Kim, J. of Alloys and Compounds, 392: 285 (2005). Crossref
  37. S. E. Stoltz, H. I. Starnberg, and M. W. Barsoum, J. Phys. Chem. Solids, 64: 2321 (2003).
  38. Y. W. Bao and Y. C. Zhou, Materials Letters, 57: 4018 (2003).
  39. M. Radovic, M. W. Barsoum, T. El-Raghy, and S. M. Wiederhorn, J. of Alloys and Compounds, 361: 299 (2003). Crossref
  40. T. Zhen, M. W. Barsoum, and S. R. Kalindidi, Acta Materialia, 53: 4163 (2005). Crossref
  41. Shi-Bo Li, Jian-Xin Xie, Li-Tong Zhang, and Lai-Fei Cheng, Materials Letters, 57: 3048 (2003).
  42. I. M. Low, Materials Letters, 58: 927 (2004).
  43. J. X. Chen and Y. C. Zhou, Scripta Materialia, 50: 897 (2004).
  44. V. I. Trefilov, Yu. V. Mil'man, S.A. Firstov, Fizicheskie osnovy prochnosti tugoplavkikh metallov (Kiev: Naukova dumka: 1975).
  45. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskiy et al., Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh metallov (Kiev: Naukova dumka: 1989).
  46. P. I. Polukhin, S. S. Gorelik, V. K. Vorontsov, Fizicheskie osnovy plasticheskoy deformatsii (Moskva: Metallurgiya: 1982).
  47. Y. Du, J. C. Schuster, H. J. Seifert, and F. Aldinger, J. Am. Ceram. Soc., 83, No. 1: 197 (2000).
  48. F. H. Hayes, Ternary Alloys (Eds. G. Petzow and G. Effeuberg) (VCH: 1990), vol. 3, p. 557.
  49. O. M. Barabash, Yu. N. Koval', Struktura i svoystva metallov i splavov: spravochnik. Kristallicheskaya struktura metallov i splavov (Kiev: Naukova dumka: 1986).
  50. D. Khall, Vvedenie v dislokatsii (Moskva: Atomizdat: 1968).
  51. Yu. V. Mil'man, Zb. «Suchasne materialoznavstvo KhKhI storichchya» (Kiiv: Naukova dumka: 1998), p. 637.