Shape Memory Effect Driven by Diffusionless and Diffusional Transformations at Elevated Temperatures

G. S. Firstov$^{1}$, Yu. N. Koval$^{1}$, J. Van Humbeeck$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$Department of Materials, KU Leuven, 44 Kasteelpark Arenberg, 3001 Leuven, Belgium

Received: 24.07.2002. Download: PDF

Several alloy systems can be selected for high-temperature shape-memory alloys, defined as alloys with stable reverse martensitic-transformation temperatures above 100°C. However, due to the lack of minimum quality standards for stability, ductility, functional behaviour, and reliability, no successful applications have been realised so far. Nevertheless, research on high-temperature shape-memory alloys (HTSMA) is an important topic not only for scientific reasons but also due to the market pull. This paper reviews some novel HTSMA systems showing shape-memory effect at elevated temperatures driven by martensitic (diffusionless) and diffusional transformations.

Keywords: shape memory effect, high-temperature martensitic and diffusional transformations.

PACS: 62.20.Fe, 64.70.Kb, 65.70.+y, 81.30.Hd, 81.30.Kf, 81.30.Mh


Citation: G. S. Firstov, Yu. N. Koval, and J. Van Humbeeck, Shape Memory Effect Driven by Diffusionless and Diffusional Transformations at Elevated Temperatures, Usp. Fiz. Met., 3, No. 3: 305—355 (2002), doi: 10.15407/ufm.03.03.305

References (61)  
  1. E. M. Carvalho and I. R. Harris, J. Less-Common Met., 106: 129 (1985). Crossref
  2. Yu. N. Koval, G. S. Firstov, and A. V. Kotko, Scripta Met. Mat., 27: 1611 (1992). Crossref
  3. V. V. Nemoshkalenko, A. V. Zhalko-Titarenko, Yu. N. Koval et al., Metallofiz. Noveishie Technol., 15, No. 1: 12 (1993) (in Russian).
  4. F. E. Wang, J. Appl. Phys., 38: 822 (1967). Crossref
  5. F. E. Wang and W. Ernst, J. Appl. Phys., 39: 2192 (1968). Crossref
  6. I. R. Harris, D. Hossain, and K. G. Barraclough, Scripta Met., 4: 305 (1970). Crossref
  7. D. Hossain, I. R. Harris, and K. G. Barraclough, J. Less-Common Met., 37: 35 (1974). Crossref
  8. C. Lall, M. H. Loretto, and I. R. Harris, Acta Metall., 26: 1631 (1978). Crossref
  9. E. M. Carvalho and I. R. Harris, J. Less-Common Met., 106: 117 (1985). Crossref
  10. E. M. Carvalho and I. R. Harris, J. Less-Common Met., 106: 143 (1985). Crossref
  11. E. M. Carvalho and I. R. Harris, J. Mat. Sci., 15: 1224 (1980). Crossref
  12. I. Z. Jorda, T. Graf, and L. Schellenberg, J. Less-Common Met., 136, No. 1: 313 (1988). Crossref
  13. E. L. Semenova and Yu. V. Kudryavtsev, J. Alloys and Compounds, 203: 165 (1994). Crossref
  14. Yu. N. Koval, G. S. Firstov, L. Delaey, and J. Van Humbeeck, Scripta Met. et Mat., 31, No. 7: 799 (1994). Crossref
  15. W. Y. Jang, J. Van Humbeeck, L. Delaey et al., 'The Influence of Ti and Ni Additions and Thermal Cycling on the Martensitic Transformation in CuZr Alloys' (Proc. of the Advanced Materials'93, B: Shape Memory Materials and Hydrides) (Eds. K. Otsuka et al.), Trans. Mat. Res. Soc. Jpn., 18B (Elsevier: 1994), p. 1009.
  16. A. V. Zhalko-Titarenko, M. L. Yevlashina, V. N. Antonov et al., Phys. Stat. Sol. (b), 184: 121 (1994). Crossref
  17. Yu. N. Koval and G. S. Firstov, 'Crystal Structure of the ZrCu Intermetallic Compound' (Proc. of XVIth Conference on Applied Crystallography) (Cieszyn, Poland, 22–26 August, 1994) (Eds. H. Morawiec and D. Stróz) (Singapore: World Scientific: 1995), p. 310.
  18. W. Bührer, R. Gotthardt, A. Kulik et al., J. Phys. F: Met. Phys., 13: L77 (1983). Crossref
  19. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, Acta Metall., 33, No. 11: 2049 (1985). Crossref
  20. R. M. Waterstrat, L. A. Bendersky, and R. Kuentzler, 'Deformation Twins and Martensite in Ductile B2 Alloys of the Zr(RuPd) System' (Proc. of the ICOMAT-92) (Monterey, USA, 20–24 July, 1992) (Ed. J. Perkins) (Monterey Institute for Advanced Studies: 1993), p. 545.
  21. I. Groma, J. Lendvai, A. Cziráki et al., Scripta Met. et Mat., 26: 255 (1992). Crossref
  22. V. V. Martynov and L. G. Khandros, Fiz. Met. Metalloved., 39, No. 5: 1037 (1975) (in Russian).
  23. D. B. Wiles and R. A. Young, J. Appl. Cryst., 14: 149 (1981). Crossref
  24. D. Schryvers, G. S. Firstov, J. W. Seo et al., Scripta Mat., 36: 1119 (1997). Crossref
  25. K. Shimizu and K. Otsuka, Shape Memory Effects in Alloys (Ed. J. Perkins) (New York: Plenum Press: 1975), p. 59–83. Crossref
  26. J. Ortin and A. Planes, Acta Metall., 36, No. 8: 1873 (1988). Crossref
  27. A. Cornelis and C. M. Wayman, Scripta Met., 10: 359 (1976). Crossref
  28. D. S. Lieberman, M. A. Schmerling, and R. S. Karz, Shape Memory Effects in Alloys (Ed. J. Perkins) (New York: Plenum Press: 1975), p. 203–226. Crossref
  29. B. Predel and W. Schwerman, Z. Naturforschg., 22a: 1499 (1967).
  30. G. Airoldi, B. Rivolta, and C. Turco, 'Heats of Transformations as a Function of Thermal Cycling in NiTi Alloys' (Proc. of the ICOMAT-86) (Nara, Japan, 26–30 August, 1986) (Sendai: The Japan Institute of Metals: 1987), p. 691–696.
  31. Y. C. Lo, S. K. Wu, and C. M. Wayman, Scripta Met. et Mat., 24: 1571 (1990). Crossref
  32. Yu. N. Koval, G. S. Firstov, J. Van Humbeeck et al., 'B2 Intermetallic Compounds of Zr. New Class of the Shape Memory Alloys' (Proc. of the ICOMAT-95) (Lausanne,Switzerland, 20–25 August, 1995) (Eds. R. Gotthardt and J. Van Humbeeck), J. Physique IV, C8, 5 (Les Editions de Physique, 1995), p. 1103–1108. Crossref
  33. G. V. Kurdjumov and L. G. Khandros, Dokl. Akad. Nauk SSSR, 66: 211 (1949) (in Russian).
  34. G. S. Firstov, Yu. N. Koval, and J. Van Humbeeck (unpublished results).
  35. R. A. Young and A. Sakthivel, Program DBWS-9006PC for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns (release of 1991).
  36. R. J. Hill and C. J. Howard, J. Appl. Cryst., 20: 467 (1987). Crossref
  37. G. S. Firstov, Yu. N. Koval, and J. Van Humbeeck, 'Irreversible Processes During Martensitic Transformation in Zr-Based Shape Memory Alloys' (Proc. of the ESOMAT'97) (Enschede, The Netherlands, 1–5 July, 1997) (Eds. J. Beyer, A. Btsttger, and J. H. Mulder), J. Physique IV, C5, 7: 549 (1997). Crossref
  38. G. S. Firstov, Yu. N. Koval, and J. Van Humbeeck, 'Shape Memory Behaviour in Quasi-Binary ZrCu-Based Intermetallic Compounds' (Proc. of the SMST'99) (Antwerp Zoo, Belgium, 5–9 September, 1999) (to be published).
  39. G. Roebben, B. Bollen, A. Brebels et al., Rev. Sci. Instrum., 68: 4511 (1997). Crossref
  40. A. S. Nowick and B. S. Berry, in Anelastic Relaxation in Crystalline Solids (New York: Academic Press: 1972).
  41. D. B. Wiles and R. A. Young, J. Appl. Cryst., 14: 149 (1981). Crossref
  42. J. W. Seo and D. Schryvers, Acta mater., 46, No. 4: 1165 (1998). Crossref
  43. S. A. Shabalovskaya, Solid State Com., 70, No. 1: 23 (1989). Crossref
  44. V. V. Kokorin, I. A. Osipenko, and T. V. Shirina, Fiz. Met. Metalloved., 67, No. 3: 601 (1989) (in Russian).
  45. S. A. Shabalovskaya, 'Factors Determining B2 Phase Stability in Ti-Based Compounds' (Proc. of the ICOMAT-92) (Monterey, USA, 20–24 July, 1992) (Eds. C. M. Wayman and J. Perkins) (Monterey Institute for Advanced Studies: 1993), p. 123.
  46. A. M. Kostyshin and G. A. Takzey, 'Dynamic Magnetic Susceptibility of Spin Glasses' (Kiev: 1985) (Prepr./Academy of Sciences of the Ukr.SSR. Institute for Metal Physics. 4.85).
  47. V. N. German, A. A. Bakanova, L. A. Tarasova, and Yu. N. Sumulov, Soviet Physics–Solid State (Translated from Fizika Tverdogo Tela), 12, No. 2: 490 (1970).
  48. E. C. Stoner, Proc. R. Soc. London, Ser. A, 154: 656 (1936). Crossref
  49. A. N. Das and B. Ghosh, J. Phys. C: Solid State Phys., 16: 1799 (1983). Crossref
  50. S. Miyazaki, Y. Igo, and K. Otsuka, Acta Met., 34, No. 10: 2045 (1986). Crossref
  51. Yu. N. Koval, A. P. Kozlov, and G. E. Monastyrski, Scripta Met., 23, No. 10: 1731 (1989). Crossref
  52. T. Khan, G. F. Stohr, and H. Bibring, On Optimized DS Composite for Turbine Blades (Proc. of the Fourth International Symposium on Superalloys) (ASM: 1980), p. 531–540.
  53. S. T. Kishkin, I. L. Svetlov, L. P. Sorokina et al., Fiz. Met. Metalloved., 55, No. 4: 754 (1983) (in Russian).
  54. H. Bibring, T. Khan, M. Rabinovich, and G. F. Stohr, Development and Evaluation of New Industrial DS Monocarbide Reinforced Composites for Turbine Blades (Proc. of the Third International Symposium on Superalloys) (Seven Springs, Pennsylvania, USA: 1976), p. 331–345. Crossref
  55. I. R. Bublei, Yu. N. Koval, and A. Yu. Pasko, Phys. Metals, 10, No. 5: 902 (1991).
  56. L. G. Khandros and I. A. Arbuzova, Metally, Ehlektrony, Reshyotka (Metals, Electrons, and Lattice) (Kiev: Naukova Dumka: 1975), p. 109–143 (in Russian).
  57. T. L. Dobrovol'skaya, P. V. Titov, and L. G. Khandros, Martensitic Transformation in Cu–Al–Mn Alloys After Partial Decomposition of the β1 Phase (Proc. of the ICOMAT-77) (Kiev, USSR, 16–20 May, 1977) (Eds. V. N. Gridnev and L. G. Khandros); Martensitnyye Prevrashcheniya v Metallakh i Splavakh (Martensitic Transformations in Metals and Alloys) (Kiev: Naukova Dumka: 1979), p. 155–157 (in Russian).
  58. M. Bouchard and G. Thomas, Acta Met., 23, No. 12: 1485 (1975). Crossref
  59. A. Kelly and R. Nicholson, Dispersion Hardening (Moscow: Mir: 1968) (Russian translation).
  60. R. Kainuma and M. Matsumoto, Scripta Met., 22: 475 (1988). Crossref
  61. Yu. N. Koval, G. E. Monastyrski, and G. S. Firstov, Method of Fabrication of the Thermal Sensitive Element—Temperature Transducer (Inventor's Certificate of the USSR No. 1469901), Byulleten' Izobretenij i Otkrytij (Bulletin of the Inventions and Discoveries), No. 12, p. 244 (1989).