The Concept of a Critical Density of Energy in Models of Fracture of Solids

Yu. Ya. Meshkov

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 13.06.2000; final version - 21.09.2000. Download: PDF

New energy conception of both solid’s fracture based on criteria of critical density of elastic energy, $p_{с}$, in fracture nuclei and three scale levels of the process, viz. atomic, microscopic and macroscopic ones, is developed in a given paper. Empirically observed regularity — the proportionality between increments of solid volume and potential energy of interatomic bonds at mechanical tension (in non-liner area of elastic deformations) and heating of solids—gives rise to these criteria. Parameter of density of interatomic-bond energy, $p_{0} = Q_{c}/V_{0}$ (where $Q_{c}$ is the sublimation energy, $V_{0}$ is the molar volume at 0 K), is a proportionality coefficient. This regularity is called as ‘the principle of constancy of density of potential energy within increment volume’ (PCDPE). On the basis of this principle, simple relations for calculation of a whole series of fundamental mechanical and thermal characteristics such as thermal-expansion coefficient, Young’s modulus, shear modulus, uniform (triaxial) compression modulus, sublimation energy, theoretical (ultimate) tearing and shearing strength, Grüneisen parameter, surface energy, etc. were obtained. All criteria of the critical density of energy include the constant $p_{0}$, and in specific case of material with atomically-sharp nanocracks, result in criterion similar to the Griffith’s one, but with a more precise (6 times greater) sufficient value of specific energy of the free-surface formation. It is shown that this new criterion is common for fracture in perfectly brittle solids as well as in quasi-brittle materials, and thereby substantially differs from classical Griffith’s criterion.

Keywords: binding energy, atomic volume, energy density, elastic moduli, ultimate strength, fracture criterion.

PACS: 62.20.Dc, 62.20.Mk, 65.40.De, 65.70.+y, 65.80.+n, 68.35.Md

DOI: https://doi.org/10.15407/ufm.02.01.007

Citation: Yu. Ya. Meshkov, The Concept of a Critical Density of Energy in Models of Fracture of Solids, Usp. Fiz. Met., 2, No. 1: 7—50 (2001) (in Russian), doi: 10.15407/ufm.02.01.007


References (32)  
  1. A. A. Griffith, Phil. Trans. Roy. Soc. A, 221: 163 (1920). Crossref
  2. A. H. Cottrell, Fracture. A Topical Encyclopedia of Current Knowledge (Malabar, Florida: Kriger Publishing Company: 1998), p. 368.
  3. Yu. Ya. Meshkov, Fizicheskie osnovy razrusheniya stal'nykh konstruktsiy (Kiev: Naukova dumka: 1981).
  4. Yu. Ya. Meshkov, G. A. Pakharenko, Struktura metalla i khrupkost' stal'nykh izdeliy (Kiev: Naukova dumka: 1985).
  5. S. A. Kotrechko, Metallofizika i Noveishie Tekhnologii, 16, No. 10: 37 (1994).
  6. J. F. Knott, Fiziko-khimicheskaya mekhanika materialov, 29, No. 3: 42 (1993).
  7. E. Orowan, Fatigue and Fract. of Met. MIT Symposium (New York: 1950), p. 139.
  8. E. Orowan, Welding J., 34: 157 (1955).
  9. J. D. Eshelby, J. Appl. Phys., 25: 255 (1954). Crossref
  10. Yu. Ya. Meshkov, Metallofizika i Noveishie Tekhnologii, 18, No. 5: 60 (1996).
  11. Dzh. Key, T. Lebi, Tablitsy fizicheskikh i khimicheskikh postoyannykh (Moskva: Fizmatgiz: 1962).
  12. Ya. I. Frenkel', Vvedenie v teoriyu metallov (Moskva–Leningrad: Gosizdat tekhniko-teoretich. literatury: 1950).
  13. M. V. Belous, M. P. Braun, Fizika metallov (Kiev: Vishcha shkola: 1986).
  14. B. G. Livshits, G. S. Kraposhin, Ya. A. Linetskiy, Fizicheskie svoystva metallov i splavov (Moskva: Metallurgiya: 1980).
  15. L. N. Larikov, Voprosy fiziki metallov i metallovedeniya (Kiev: Naukova dumka: 1967), s. 35.
  16. A. Seeger and H. Stehle, Z. Phys., 146: 242 (1956). Crossref
  17. M. A. Shtremel', Prochnost' splavov. Defekty reshetki (Moskva: Metallurgiya: 1982).
  18. B. Ya. Pines, Ocherki po metallofizike (Khar'kov: Izd-vo Khar'kovskogo universiteta: 1951), s. 98.
  19. N. Makmillan, Ideal'naya prochnost' tel. Mekhanika, atomistika razrusheniya (Moskva: Mir: 1987).
  20. M. L. Bernshteyn, V. A. Zaymovskiy, Struktura i mekhanicheskie svoystva metallov (Moskva: Metallurgiya: 1970).
  21. V. S. Ivanova, Ustalostnoe razrushenie metallov (Moskva: Metallurgiya: 1983).
  22. A. I. Petrov, V. I. Betekhtin, Fiz. met. metalloved., 34, No. 1: 39 (1972).
  23. J. E. Mackenzie, Phil. Doct. Thesis (Bristol: 1949).
  24. M. Mullins and M. A. Dokainish, Phil. Mag. A, 46, No. 5: 771 (1982). Crossref
  25. S. Ya. Yarema, A.-A. Griffits (1893–1963), Fiziko-khimicheskaya mekhanika materialov, 29, No. 3: 7 (1993).
  26. Yu. Ya. Meshkov, MiTOM, 1: 30 (1996).
  27. C. E. Inglis, Trans. Roy. Inst. Nav. Archit., 55: 219 (1913).
  28. Yu. Ya. Meshkov, T. N. Serditova, Razrushenie deformirovannoy stali (Kiev: Naukova dumka: 1989).
  29. D. Broek, Osnovy mekhaniki razrusheniya (Moskva: Vysshaya shkola: 1980).
  30. Dzh. Khan, B. Averbakh, V. Ouen, M. Koen, Atomnyy mekhanizm razrusheniya (Moskva: Gos. NTI cher. i tsvet. metall.: 1963), s. 109.
  31. S. A. Kotrechko, Yu. Ya. Meshkov, K. P. Ryaboshapka, N. N. Stetsenko, Metallofizika i Noveishie Tekhnologii, 17, No. 1: 51 (1995).
  32. G. P. Zimina, S. A. Kotrechko, Yu. Ya. Meshkov, Sb. «Elektronnaya mikroskopiya i prochnost' materialov». Trudy IPM NAN Ukrainy (Kiev: IPM NAN Ukrainy: 1999), No. 10, s. 54.
Cited By (1)
  1. I. M. Laptev and O. O. Parkhomenko, Usp. Fiz. Met. 11, 19 (2010).