Анализ материалов и современных технологий для изготовления свёрл, оснащённых коронками, армированными поликристаллическими синтетическими алмазами

Л. Я. Ропяк$^1$, Т. А. Пригоровская$^1$, К. Г. Левчук$^2$

$^1$Ивано-Франковский национальный технический университет нефти и газа, ул. Карпатская, 15, 07600 Ивано-Франковск, Украина
$^2$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена 24.02.2020; окончательный вариант — 17.04.2020 Скачать PDF logo PDF

Аннотация
С целью привлечения более широкого круга учёных к поиску новых и усовершенствованию имеющихся технологических процессов изготовления буровых долот в зависимости от используемых материалов, способов формирования точности и качества их рабочих поверхностей проведён обзор и анализ технологических систем механической обработки и имеющихся технических средств. Выполнен обзор работ, где рассмотрено влияние механико-физических характеристик, свойств, структуры, а также современных технологий, инструментов и технических средств, проанализированы основные тенденции и различия в технологиях, которые определяются используемыми материалами. Показано, что металловедческий подход к вопросам проектирования буровых инструментов является основным путём для существенного повышения их эксплуатационных свойств; кроме этого, исследования условий термодинамического равновесия и характера протекания в металлических материалах различных процессов при изготовлении буровых долот обеспечат их высокие эксплуатационные показатели. Построена схема формирования качества бурового долота, согласно которой качество долота является комплексным показателем и определяется как материалами, так и технологией изготовления отдельных элементов долот. Показано, что основными технологическими этапами, на которых формируется качество долота, является производство заготовок, черновая и получистовая механическая обработка резанием деталей, химико-термическая обработка, покрытие корпуса, доводочная механическая обработка резанием, припайки резцов, сборка долота в целом. Установлено, что различия в применяемых материалах определяют различия не только в технологии, но и в конструкции бурового долота.

Ключевые слова: буровое долото PDC, качество, технология, металл, сварка, литьё, корпус, резец.

Citation: L. Ya. Ropyak, T. O. Pryhorovska, and K. H. Levchuk, Analysis of Materials and Modern Technologies for PDC Drill Bit Manufacturing, Progress in Physics of Metals, 21, No. 2: 274–301 (2020); doi: 10.15407/ufm.21.02.274


Цитированная литература (104)  
  1. Energy Strategy of Ukraine for the Period until 2035. Approved by the Cabinet of Ministers of Ukraine on August 15, 2017 No. 605-p (available at: http://mpe.kmu.gov.ua/minugol/control/publish/article?art_id=245234085) (in Ukrainian).
  2. V.G. Neupokoev and A.A. Chernik, Chemical and Petroleum Engineering, 20, No. 9: 461 (1984). https://doi.org/10.1007/BF01166117
  3. M. Yahiaoui, L. Gerbaud, J.-Y. Paris, J. Denape, and A. Dourfaye, Wear, 32, No. 1: 298 (2013). https://doi.org/10.1016/j.wear.2012.12.026
  4. T.O. Pryhorovska, Machining Science and Technology, 21, No. 1: 37 (2017). https://doi.org/10.1080/10910344.2016.1260429
  5. T.A. Pryhorovska and S.S. Chaplinskiy, Neftyanoye Khozyaystvo — Oil Industry, 1131, No. 1: 38 (2018) (in Russian). https://doi.org/10.24887/0028-2448-2017-1-38-41
  6. T.O. Pryhorovska and S.S. Chaplinskyy, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 39, No. 5: 39 (2014) (in Ukrainian).
  7. A.A. Bedzir, I.P. Shatskii, and V.M. Shopa, International Applied Mechanics, 31, No. 5: 351 (1995). https://doi.org/10.1007/BF00846842
  8. I.Yo. Popadyuk, I.P. Shats’kyi, V.M. Shopa, and A.S. Velychkovych, Journal of Mathematical Sciences, 215, No. 2: 243 (2016). https://doi.org/10.1007/s10958-016-2834-x
  9. A. Velichkovich, T. Dalyak, and I. Petryk, Oil and Gas Science and Technology, 73, 2018043 (2018). https://doi.org/10.2516/ogst/2018043
  10. V.M. Shopa, I.P. Shatskii, and I.I. Popadyuk, Soviet Engineering Research, 9, No. 3: 42 (1989).
  11. V.M. Shopa, I.P. Shatskii, S.V. Velichkovich, and I.I. Popadyuk, Neftyanoye Khozyaystvo — Oil Industry, No. 3: 28 (1990).
  12. S.V. Velichkovich, I.I. Popadyuk, I.P. Shatskii, and V.M. Shopa, Strength of Materials, 23, No. 3: 279 (1991). https://doi.org/10.1007/BF01194768
  13. I. Shatskyi, I. Popadyuk, and A. Velychkovych, Springer Proceedings in Mathematics and Statistics, 249: 343 (2018). https://doi.org/10.1007/978-3-319-96601-4_31
  14. I.P. Shatskii and V.V. Perepichka, Journal of Applied Mechanics and Technical Physics, 54, No. 6: 1016 (2013). https://doi.org/10.1134/S0021894413060163
  15. I. Shatskyi and V. Perepichka, Springer Proceedings in Mathematics and Statistics, 249: 335 (2018). https://doi.org/10.1007/978-3-319-96601-4_30
  16. C.H. Cooley, P.E. Pastusek, and L.A. Sinor, SPE Annual Technical Conference and Exhibition, SPE-24586-MS (1992).
  17. E.I. Kryzhanivs’kyi, V.P. Rudko, and I.P. Shats’kyi, Materials Science, 40, No. 4: 547 (2004). https://doi.org/10.1007/s11003-005-0076-z
  18. I.P. Shats’kyi and A.B. Struk, Strength of Materials, 41, No. 5: 548 (2009). https://doi.org/10.1007/s11223-009-9165-9
  19. A.S. Velychkovych, A.V. Andrusyak, T.O. Pryhorovska, and L.Y. Ropyak, Oil and Gas Science and Technology, 74: 2019039 (2019). https://doi.org/10.2516/ogst/2019039
  20. I.P. Shats’kyi, O.M. Lyskanych, and V.A. Kornuta, Strength of Materials, 48, No. 3: 469 (2016). https://doi.org/10.1007/s11223-016-9786-8
  21. G. Dong and P. Chen, Hindawi Publishing Corporation Shock and Vibration Shock and Vibration, 2016, No. 1: 1 (2016). https://doi.org/10.1155/2016/7418635
  22. I.I. Vytvytskyi, M.V. Seniushkovych, and I.P. Shatskyi, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 28, No. 5: 29 (2017).
  23. I. Shatskyi, I. Vytvytskyi, M. Seniushkovych and A. Velychkovych, IOP Conf. Series: Materials Science and Engineering, 564, 012073 (2019). https://doi.org/10.1088/1757-899X/564/1/012073
  24. I. Shatskyi, A. Velychkovych, I. Vytvytskyi, and M. Seniushkovych, Engineering Solid Mechanics, 7, No. 4: 355 (2019). https://doi.org/10.5267/j.esm.2019.6.002
  25. M. Dutkiewicz, I. Gołȩbiowska, I. Shatskyi, V. Shopa, and A. Velychkovych, MATEC Web of Conferences, 178, 06010 (2018). https://doi.org/10.1051/matecconf/201817806010
  26. A.S. Velichkovich, Chemical and Petroleum Engineering, 41, Nos. 7–8: 363 (2005). https://doi.org/10.1007/s10556-005-0121-7
  27. A.S. Velichkovich, Chemical and Petroleum Engineering, 43, Nos. 7–8: 458 (2007). https://doi.org/10.1007/s10556-007-0081-1
  28. A.S. Velichkovich, I.I. Popadyuk, and V.M. Shopa, Chemical and Petroleum Engineering, 46, Nos. 9–10: 518 (2011). https://doi.org/10.1007/s10556-011-9370-9
  29. I. Shatskyi, I. Popadyuk, and A. Velychkovych, 23rd International Conference on Engineering Mechanics (May 15–18, 2017, Svratka, Czech Republic) (Brno: Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics: 2017), p. 870.
  30. A.S. Velichkovich and T.M. Dalyak, Chemical and Petroleum Engineering, 51, No. 3: 188 (2015). https://doi.org/10.1007/s10556-015-0022-3
  31. A. Velychkovych, I. Petryk, and L. Ropyak, Shock and Vibration, 2020: 3292713 (2020). https://doi.org/10.1155/2020/3292713
  32. K.G. Levchuk, Metallofizika i Noveishie Tekhnologii, 40, No. 1: 45 (2018) (in Ukrainian). https://doi.org/10.15407/mfint.40.01.0045
  33. V. Moisyshyn and K. Levchuk, Oil and Gas Science and Technology, 72, No. 5: 27 (2017). https://doi.org/10.2516/ogst/2017024
  34. K.G. Levchuk, SOCAR Proceedings, No. 2: 23 (2017). https://doi.org/10.5510/OGP20170200312
  35. K.G. Levchuk, V.M. Moisyshyn, and I.V. Tsidylo, Metallofizika i Noveishie Tekhnologii, 38, No. 12: 1655 (2016) (in Ukrainian). https://doi.org/10.15407/mfint.38.12.1655
  36. Yu.Yo. Striletskyy and V.A. Rovinskyy, Metallofizika i Noveishie Tekhnologii, 39, No. 10: 1377 (2017) (in Ukrainian). https://doi.org/10.15407/mfint.39.10.1377
  37. O. Vlasiy, V. Mazurenko, L. Ropyak, and O. Rogal, Eastern-European Journal of Enterprise Technologies, 1, No. 7 (85): 25 (2017) (in Ukrainian). https://doi.org/10.15587/1729-4061.2017.65718
  38. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, No. 5 (79): 53 (2016) (in Ukrainian). https://doi.org/10.15587/1729-4061.2016.59850
  39. O.M. Semegen, Z.M. Odosii, and V.V. Kustov, Strength of Materials, 46, No. 4: 575 (2014). https://doi.org/10.1007/s11223-014-9585-z
  40. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, and M.Ya. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 39, No. 3: 363 (2017) (in Russian). https://doi.org/10.15407/mfint.39.03.0363
  41. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, and M.Ya. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 38, No. 12: 1611 (2016) (in Russian). https://doi.org/10.15407/mfint.38.12.1611
  42. V.M. Beresnev, Yu.M. Shabelnyk, N.I. Shumakova, U.S. Nyemchenko, and A.S. Manokhin, Journal of Nano- and Electronic Physics, 9, No. 4 (2017). https://doi.org/10.21272/jnep.9(4).04023
  43. V.M. Nadutov, A.V. Proshak, S.Y. Makarenko, V.Y. Panarin, and M.Y. Svavil’nyj, Materialwissenschaft und Werkstofftechnik, 47, Nos. 2–3: 272 (2016). https://doi.org/10.1002/mawe.201600489
  44. V.Ye. Panarin, M.Ye. Svavil’nyy, A.I. Khominych, M.V. Kindrachuk, and A.O. Kornienko, Journal of Nano- and Electronic Physics, 9, No. 6: 06023 (2017) (in Ukrainian). https://doi.org/10.21272/jnep.9(6).06023
  45. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, European Physical Journal B, 90, No. 6: 112 (2017). https://doi.org/10.1140/epjb/e2017-80091-x
  46. S.I. Kryshtopa, D.Y. Petryna, I.M. Bogatchuk, I.B. Prun’ko, and V.M. Mel’nyk, Materials Science, 53, No. 3: 351 (2017). https://doi.org/10.1007/s11003-017-0082-y
  47. L.S. Saakiyan, A.P. Efremov, and L.Ya. Ropyak, Zashchita Metallov, 25, No. 2: 185 (1989) (in Russian).
  48. L.S. Saakiyan, A.P. Efremov, L.Ya. Ropyak, and A.V. Gorbatskii, Soviet Materials Science, 23, No. 3: 267 (1987). https://doi.org/10.1007/BF00720884
  49. Y. Striletsyi, V. Rovinskiy, and O. Yevchuk, Eastern-European Journal of Enterprise Technologies, 3, No. 9 (81): 24 (2016) (in Ukrainian). https://doi.org/10.15587/1729-4061.2016.71969
  50. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, V.A. Herasymenko, and N.S. Evtushenko, Metallofizika i Noveishie Tekhnologii, 40, No. 2: 235 (2018). https://doi.org/10.15407/mfint.40.02.023
  51. M.A. Dolgov, N.A. Zubrets’ka, A.V. Buketov, and P.D. Stukhlyak, Strength of Materials, 44, No. 1: 81 (2012). https://doi.org/10.1007/s11223-012-9352-y
  52. N. Prokopiv, O. Kharchenko, E. Gevorkyan, and Y. Gutsalenko, Eastern-European Journal of Enterprise Technologies, 3, No. 12 (99): 17 (2019). https://doi.org/10.15587/1729-4061.2019.171805
  53. M. Pashchenko, J. Jozwik, K. Dziedzic, M. Karolus, and I. Usidus, Materials Science, 52, No. 6: 834 (2017). https://doi.org/10.1007/s11003-017-0028-4.
  54. I.M. Zin’, R.S. Mardarevych, L.M. Bilyi, S.A. Kornii, and Z.A. Duryagina, Materials Science, 55: 284 (2019). https://doi.org/10.1007/s11003-019-00301-3
  55. A. Permyakov, S. Dobrotvorskiy, L. Dobrotvorskiy, Y. Basova, and M. Ivanova, Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering (Eds. V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Cham: Springer: 2019), p. 135. https://doi.org/10.1007/978-3-319-93587-4_15
  56. I.P. Shatskyi, L.Ya. Ropyak, and M.V. Makoviichuk, Strength of Materials, 48, No. 5: 726 (2016). https://doi.org/10.1007/s11223-016-9817-5
  57. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofizika i Noveishie Tekhnologii, 39, No. 4: 517 (2017). https://doi.org/10.15407/mfint.39.04.0517
  58. N.A. Dolgov, Strength of Materials, 48, No. 5: 658 (2016). https://doi.org/10.1007/s11223-016-9809-5
  59. I.P. Shats’kyi, M.V. Makoviichuk, Materials Science, 39, No. 3: 371 (2003). https://doi.org/10.1023/B:MASC.0000010742.15838.44
  60. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofizika i Noveishie Tekhnologii, 41, No. 5: 657 (2019). https://doi.org/10.15407/mfint.41.05.0647
  61. L. Ropyak and V. Ostapovych, Eastern-European Journal of Enterprise Technologies, 1, No. 2 (5): 50 (2016). https://doi.org/10.15587/1729-4061.2016.65719
  62. I.P. Shatskii, Journal of Applied Mechanics and Technical Physics, 30, No. 5: 828 (1989). https://doi.org/10.1007/BF00851435
  63. I.P. Shats’kii, Journal of Soviet Mathematics, 67, No. 5: 3355 (1993). https://doi.org/10.1007/BF01097747
  64. I.P. Shatskii, Journal of Soviet Mathematics, 76, No. 3: 2370 (1995). https://doi.org/10.1007/BF02362900
  65. I.P. Shats’kyi, Materials Science, 41, No. 2: 186 (2005). https://doi.org/10.1007/s11003-005-0149-z
  66. I.P. Shatskyi, M.V. Makoviichuk, and A.B. Shcherbii, Proceedings of the 11th International Conference on Shell Structures: Theory and Applications, SSTA 2017, 4: 165 (2018). https://doi.org/10.1201/9781315166605-34
  67. I.P. Shats’kyi, M.V. Makoviichuk, and A.B. Shcherbii, Journal of Mathematical Sciences, 238, No. 2: 165 (2019). https://doi.org/10.1007/s10958-019-04226-9
  68. I. Shatskyi and I. Kurtash, Procedia Structural Integrity, 13: 1482 (2018). https://doi.org/10.1016/j.prostr.2018.12.305
  69. V.V. Panasyuk, V.I. Marukha, and V.P. Sylovanyuk, Injection Technologies for the Repair of Damaged Concrete Structures (Dordrecht: Springer: 2014). https://doi.org/10.1007/978-94-007-7908-2
  70. V.P. Sylovanyuk and R.Ya. Yukhim, Strength of Materials, 43, No. 1: 33 (2011). https://doi.org/10.1007/s11223-011-9265-1
  71. I.P. Shats’kyi, Materials Science, 51, No.3: 322 (2015). https://doi.org/10.1007/s11003-015-9845-5
  72. I.P. Shatskyi, V.V. Perepichka, and L.Ya. Ropyak, Metallofizika i Noveishie Tekhnologii, 42, No. 1: 69 (2020). https://doi.org/10.15407/mfint.42.01.0069
  73. V.V. Kukhar and O.V. Vasylevskyi, Metallurgical and Mining Industry, No. 3: 71 (2014).
  74. V.V. Kukhar, Metallurgical and Mining Industry, No. 6: 122 (2015).
  75. V. Kukhar, V. Burko, A. Prysiazhnyi, E. Balalayeva, and M. Nahnibeda, East-European Journal of Enterprise Technology, 3, No. 7 (81): 53 (2016). https://doi.org/10.15587/1729-4061.2016.72063
  76. Materials of the Baker Hudges’ site: https://www.bakerhughes.com.
  77. A.G. Bogachenko, Yu.P. Linenko-Mel’nikov, and V.I. Mel’nik, Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument. Tekhnika i Tekhnologiya Ego Primeneniya: Sbornik Nauchnykh Trudov, No. 12: 69 (2000) (in Russian).
  78. M.Z. Khostikoev and A.N. Makhnenko, Gornyy Informatsionno-Analiticheskiy Byulleten’, 322, No. 4: (2011) (in Russian).
  79. M.V. Maysuradze, M.A. Ryzhkov, Yu.V. Yudin, and O.A. Surnaeva, Proc. XV Int. Scientific and Technical Ural School-Seminar of Metal Scientists-Young Scientists (December 8–12, 2014, Ekaterinburg) (Ekaterinburg: 2014), p. 325 (in Russian).
  80. V.Y. Buhakov and A.Y. Laptev, Izvestyia VUZov. Chernaya Metallurgiya, 60, No. 1: 36 (2017) (in Russian).
  81. J.A. Oxford, J.W. Eason, R.H. Smith, J.H. Stevens, and N.J. Lyons, Bore Bit for Rotor Drilling and Procedure for Its Fabrication: Patent RU2412326, MKІ E21B10/00, B22F7/06 (2011) (in Russian).
  82. A.N. Zhuravlev and M.A. Borisov, Izvestiya Tomskogo Politekhnicheskogo Universiteta, 311, No. 2: 27 (2007) (in Russian).
  83. B.V. Stefaniv, Automatic Welding, No. 9: 29 (2016) (in Russian). https://doi.org/10.15407/as2016.09.05
  84. A.F. Salenko, A.N. Fedot’ev, L.P. Fedot’eva, and A.M. Mana, Scientific Bulletin of National Mining University, 6: 48 (2015) (in Ukrainian).
  85. K.T. Kembaiyan, M.K. Keshavan, A.C. White, and B.A. White, Layered Hardfacing, Durable Hardfacing for Drill Bits: Patent US7770672B2, MKI, E21B 10/46, C23C 30/00 (2010).
  86. V.V. Knysh, B.N. Mordyuk, G.I. Prokopenko, and S.A. Solovey, Metallofizika i Noveishie Tekhnologii, 41, No. 12: 1631 (2019). https://doi.org/10.15407/mfint.41.12.1631
  87. R.M. Bogomolov, A.V. Kinyaev, S.M. Krylov, A.M. Grinev, D.R. Yamanaev, and M.I. Starygin, Almaznoe Doloto s Mekhanicheskim Krepleniem Reztsov [Diamond Drill Bit with Mechanical Fastening of Cutters]: Patent RU2536901, MKI 2536901, E21C35/197, E21B10/573 (2013) (in Russian).
  88. M.S. Ostrovskiy, V.U. Mnatsakanyan, and V.A. Timiryazev, Programmirovanie Obrabotki Detaley Gornykh Mashin na Stankakhs ChPU: Uchebnoe Posobie [Programming the Processing of Parts of Mining Machines on CNC Machines: Training Manual] (Moscow: Izd-vo ‘Gornaya Kniga’: 2009) (in Russian).
  89. V.G. Panchuk, L.Ya. Rop’yak, and O.R. Onis’ko, Rіzets’ dlya Narіzannya Zovnіshnyoyi Trykutnoyi Tsylіndrychnoyi Narіzі [Cutter for External Cylindrical Thread Vutting]: Patent UA109077C2, MKI B23B 27/06 (2015) (in Ukrainian).
  90. M.D. Dennis and P.D. Gigl, Composite Compact of Interleaved Polycrystalline Particles and Cemented Carbide Masses: Patent US4255165A, MKI B227/06 (1978).
  91. S.S. Vagarali, Method for Producing Cubic Boron Nitride Using Melamine as a Catalyst: Patent US5869015A, МKI, C04B, 35/5831 (1998).
  92. A.L. Maystrenko, Formirovanie Struktury Kompozitsionnykh Almazosoderzhashchikh Materialov v Tekhnologicheskikh Protsessakh [Formation of Structure of Composite Diamond Materials in Technological Processes] (Kyiv: Naukova Dumka: 2014) (in Russian).
  93. T. Nakai, Sh. Yazu, and A. Hara, Compound Sintered Compact for Use in a Tool and the Method for Producing the Same: Patent US4403015A, MKI, B22F 3/4 (1983).
  94. Plastyny Almazno-Tverdosplavnі dlya Rіzal’nogo Instrumentu, TU 88 Ukrainy: 90.1244-91 (Kyiv: V.M. Bakul Institute for Superhard Materials of the AS of Ukraine: 1991) (in Ukrainian).
  95. E.E. Ashkinazi, V.G. Ral’chenko, V.I. Konov, A.A. Shul’zhenko, A.N. Sokolov, and V.G. Gargin, Sverkhtverdyy Material [Superhard Material]: Patent RU2066729, MKI E21 V10/46 (1996) (in Russian).
  96. N.V. Novikov, Yu.I. Nikitin, B.A. Uryukov, V.A. Manzhar, V.G. Poltoratskiy, A.A. Shul’zhenko, V.G. Gargin, and S.M. Uman, Sposob Izgotovleniya Almazno-Tverdosplavnykh Plastin [A method of Manufacturing of Diamond Carbide Plates]: Patent SU1566660 A1, MKI B24D 11/00 (1988) (in Russian).
  97. Y. Shen, Y. Zhang, S. Yuang, and M. Keshavan, Polycrystalline Diamond Composites: Patent Application US20080073126A1, MKI E21B, 10/567 (2015).
  98. C. Sheridan, Aggregate Abrasive Grains for Abrading or Cutting Tools Production: Patent Application US20110056142A1, MKI B24D3/008 (2013).
  99. S. Middlemiss, J. Belnap, N. Mourik, T. Oldham, and A. Griffo, Thermally Stable Ultra-Hard Material Compact Construction: Patent Application 20060266558, MKI B24D 11/00 (2011).
  100. Y. Shen, Y. Zhang, S. Yuang, and M. Keshavan, Polycrystalline Diamond Composites: Patent Application US20080073126A1, MPK E21B, 10/567 (2015).
  101. V.T. Dmitriev, G.A. Boyarskikh, D.S. Dmitriev, I.G. Boyarskikh, and V.V. Murashov, Sposob Krepleniya Porodorazrushayushchikh Vstavok Burovogo Instrumenta i Rabochikh Organov Prokhodcheskikh Mashin [The Method of Fastening Rock-Cutting Inserts of Drilling Tools and Working Bodies of Tunnelling Machines]: Patent RU2477780, MKI E21V 10/573, E21S 35/197 (2009) (in Russian).
  102. B.V. Stefaniv, Automatic Welding, No. 8: 50 (2013) (in Russian).
  103. N. Volchenko, A. Volchenko, D. Volchenko, P. Poliakov, V. Malyk, D. Zhuravliov, V. Vytvytskyi, and P. Krasin, Eastern-European Journal of Enterprise Technologies, 1, No. 5 (97): 47 (2019). https://doi.org/10.15587/1729-4061.2019.154712
  104. V. Kopei, O. Onysko, and V. Panchuk, Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering. (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Cham: Springer: 2020), p. 149. https://doi.org/10.1007/978-3-030-22365-6_15