Production of Aluminium-Matrix-Based Composites with Carbon Nanotubes: Nanostructure and Mechanical Properties

VOLOSHKO S.M.$^1$, MORDYUK B.M.$^2$, and VASYLYEV M.O.$^2$

$^1$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Ave., UA-03056 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received / Final version: 26.04.2025 / 13.10.2025 Download PDF logo PDF

Abstract
The growing demand for parts offering a high strength-to-weight ratio drives the need for lightweight materials for the aerospace and automotive industries. In this regard, the presented article aims to review the production aspects of a new class of lightweight materials with a high specific strength. The aluminium/carbon nanotubes (Al/СNTs) composites are among such materials. The present review characterises the following modern methods for producing such composites: friction stir processing, powder rolling process, powder extrusion process, high-pressure torsion, infiltration into the preform, pressureless sintering in vacuum, modified stir casting technique, spark plasma sintering, and laser additive manufacturing. The results of experimental studies of the mechanical characteristics of the Al/СNTs composites obtained by different methods and observations of the nanostructure formation depending on the СNTs content are presented. The strengthening mechanisms of the Al/СNTs systems are also considered.

Keywords: aluminium, composites, carbon nanotubes, synthesis, nanostructure, specific strength, hardness.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: S.M. Voloshko, B.M. Mordyuk, and M.O. Vasylyev, Production of Aluminium-Matrix-Based Composites with Carbon Nanotubes: Nanostructure and Mechanical Properties, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


References  
  1. P. Sarmah and K. Gupta, Materials, 17: 4635 (2024); https://doi.org/10.3390/ma17184635
  2. A. Bhowmik, R. Kumar, N. Beemkumar, A.V. Kumar, G. Singh, A. Kulshreshta, V.S. Mann, and A.J. Santhosh, Results Eng., 24: 103152 (2024); https://doi.org/10.1016/j.rineng.2024.103152
  3. M. Venkatraman and M.A. Xavior, Results Eng., 25: 104492 (2025); https://doi.org/10.1016/j.rineng.2025.104492
  4. M.S.K.K.Y. Nartu, and P. Agrawal, Mater. Design, 252: 113609 (2025); https://doi.org/10.1016/j.matdes.2025.113609
  5. J. Liu, R.Q. Ding, J.M. Cao, K. Zhan, S.Q. Li, B. Zhao, and V. Ji, Carbon, 228: 119382 (2024); https://doi.org/10.1016/j.carbon.2024.119382
  6. K. Pooja, N. Tarannum, and P. Chaudhary, Discov. Mater., 5: 35 (2025); https://doi.org/10.1007/s43939-025-00226-6
  7. K. Morsi, M. Krommenhoek, and M. Shamma, Met. Mater. Trans. A, 47: 2574–2578 (2016); https://doi.org/10.1007/s11661-016-3423-9
  8. K.A. Sheikh and M.M. Khan, J. Alloys Metall. Syst., 10: 100173 (2025); https://doi.org/10.1016/j.jalmes.2025.100173
  9. T. Mahmud, S. Mia, R. Ahammad, and M.S. Shaikh, Hybrid Adv., 8: 100355 (2025); https://doi.org/10.1016/j.hybadv.2024.100355
  10. M.Y. Khalid, R. Umer, and K.A. Khan, Results Eng., 20: 101372 (2023); https://doi.org/10.1016/j.rineng.2023.101372
  11. B. Singh, I. Kumar, K.K. Saxen, K.A. Mohammed, M.I. Khan, S.B. Moussa, and S.S. Abdullaev, Alexandria Eng. J., 76: 1 (2023); https://doi.org/10.1016/j.aej.2023.06.028
  12. E. Georgantzia, M. Gkantou, and G.S. Kamaris, Eng. Struct., 227: 111372 (2021); https://doi.org/10.1016/j.engstruct.2020.111372
  13. M.Y. Khalid, A.A. Rashid, and M.F. Sheikh, Exp. Tech., 15: 51040 (2021); https://doi.org/10.1007/s40799-020-00433-1
  14. S. Tejyan, C. Lal, C.K. Ror, and V. Singh, J. Eng. Res., 13: 131 (2025); https://doi.org/10.1016/j.jer.2023.08.002
  15. A. Thakur, D. Bandhu, D.R. Peshwe, Y.Y. Mahajan, K.K. Saxena, and S.M. Eldin, J. Mater. Res. Technol., 26: 267 (2023); https://doi.org/10.1016/j.jmrt.2023.07.121
  16. H.M.I. Al-Zuhairi and S.A. Amin, AI Rafidain J. Eng. Sci., 3: 450 (2025); https://doi.org/10.61268/eqmby745
  17. M.M. Adil, M.M.H. Parvez, M.M. Hassan, R. Ahmed, M.N. Quader, A.B. Rashid, and I. Ahmed, Results Eng., 22: 101990 (2024); https://doi.org/10.1016/j.rineng.2024.101990
  18. S. Iijima, Nature, 354: 56 (1991); https://doi.org/10.1038/354056a0
  19. E.T. Thostenson, Z. Ren, and T.W. Chou, Composites Sci. Technol., 61: 1899 (2001); https://doi.org/10.1016/S0266-3538(01)00094-X
  20. S. Rathinavel, K. Priyadharshini, and D. Panda, Mater. Sci. Eng. B, 268: 115095 (2021); https://doi.org/10.1016/j.mseb.2021.115095
  21. K.J. Hughes, Kavita A. Iyer, R.E. Bird, J. Ivanov, S. Banerjee, G. Georges, and Q.Q.A. Zhou, ACS Appl. Nano Mater., 7: 18695 (2024); https://doi.org/10.1021/acsanm.4c02721
  22. A. Yahyazadeh, S. Nanda and A.K. Dalai, Reactions, 5: 429 (2024); https://doi.org/10.3390/reactions5030022
  23. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, G.B. Patent Application No. 9125978.8 (December 1991).
  24. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R, 50: 1 (2005); https://doi.org/10.1016/j.mser.2005.07.001
  25. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Carbon, 50: 843 (2012); https://doi.org/10.1016/j.carbon.2011.12.034
  26. A.M.K. Esawi and M.A. El Borady, Composites Sci. Technol., 68: 486 (2008); https://doi.org/10.1016/j.compscitech.2007.06.030
  27. J. Yuuki, H. Kwon, A. Kawasaki, A. Magario, T. Noguchi, J. Beppu, and M. Seki, Mater. Sci. Forum, 534–536: 889 (2007); https://doi.org/10.4028/www.scientific.net/MSF.534-536.889
  28. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Scripta Mater., 53: 1159 (2005); https://doi.org/10.1016/j.scriptamat.2005.07.022
  29. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Composites Sci. Technol., 70: 2237 (2010); https://doi.org/10.1016/j.compscitech.2010.05.004
  30. I. Sridhar and K.R. Narayanan, J. Mater. Sci., 44: 1750 (2009); https://doi.org/10.1007/s10853-009-3290-5
  31. C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Mater. Sci. Eng. A, 444: 138 (2007); https://doi.org/10.1016/j.msea.2006.08.057
  32. J.G. Park, D.H. Keum, and Y.H. Lee, Carbon, 95: 690 (2015); https://dx.doi.org/10.1016/j.carbon.2015.08.112
  33. P.W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill: New York: 1952).
  34. T. Tokunaga, K. Kaneko, and Z. Horita, Mater. Sci. Eng. A, 490: 300 (2008); https://doi.org/10.1016/j.msea.2008.02.022
  35. M. Jafari, M.H. Abbasi, M.H. Enayati, and F. Karimzadeh, Adv. Powder Technol., 23: 205 (2012); https://doi.org/10.1016/j.apt.2011.02.008
  36. B.O. Kucukyildirim and A.A. Eker, Adv. Composites Lett., 21: 125 (2012); https://doi.org/10.1177/096369351202100503
  37. R. Pérez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martínez-Sánchez, J. Alloys Comp., 450: 323 (2008); https://doi.org/10.1016/j.jallcom.2006.10.146
  38. R.M. Rashad, O.M. Awadallah, and A.S. Wifi, J. Achiev. Mater. Manuf. Eng., 58, No. 2: 74 (2013).
  39. C.O. Ujah, D.V. Von Kallon, and V.S. Aigbodion, Mater. Today Sustainability, 25: 100639 (2024); https://doi.org/10.1016/j.mtsust.2023.100639
  40. J.-Z. Liao, M.-J. Tan, and I. Sridhar, Mater. Des., 31: S96 (2010); https://doi.org/10.1016/j.matdes.2009.10.022
  41. K. Morsi, M. Krommenhoek, and M. Shamma, Metall. Mater. Trans. A, 47: 2575 (2016); https://doi.org/10.1007/s11661-016-3423-9
  42. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Carbon, 47: 570 (2009); https://doi.org/10.1016/j.carbon.2008.10.041
  43. I.-Y. Kim, J.-H. Lee, G.-S. Lee, S.-H. Baik, Y.-J. Kim, and Y.-Z. Lee, Wear, 267: 593 (2009); https://doi.org/10.1016/j.wear.2008.12.096
  44. D.D. Gu, X.W. Rao, D.H. Dai, C.L. Ma, L.X. Xi, and K.J. Lin, Additive Manuf., 29: 100801 (2019); https://doi.org/10.1016/j.addma.2019.100801