Advanced Layered Titanium-Based Materials 3D-Printed with Electron Beam and Cored Wire Approach

MARKOVSKY P.E.$^{1}$, KOVALCHUK D.V.$^{1,2}$, JANISZEWSKI J.$^{3}$, SAVVAKIN D.G.$^{1}$, FIKUS B.$^{3}$, SIENKIEWICZ J.$^{3}$, STASIUK O.O.$^{1}$, ORYSHYCH D.V.$^{1}$, NEVMERZHYTSKY V.I.$^{1,2}$, and TKACHUK V.P.$^{1,2}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$JSC ‘NVO Chervona Hvylya’, 28 Dubrovitska Str., UA-04114 Kyiv, Ukraine
$^3$General Jarosław Dąbrowski Military University of Technology, 2 General Sylwester Kaliski Str., PL-00-908 Warsaw, Poland

Received / Final version: 30.06.2025 / 31.10.2025 Download PDF logo PDF

Abstract
Titanium-based layered materials, which combine hard layers of metal matrix composites (MMCs) with ductile alloy layers, show great promise for achieving enhanced mechanical and service performance. In this study, two-layer materials are investigated, consisting of a base substrate made of cast and wrought titanium alloy (T–6Al–4V plates), with top layers of MMCs 3D-printed on them. These MMC layers are also based on the Ti-6Al–4V alloy and reinforced with 40 vol.% TiC particles. A cored wire containing the MMC composition is used as feedstock in an advanced 3D-printing technique that employs a low-voltage profile electron beam as the heat source, enabling optimised coaxial wire feeding. The results show that, by varying the thicknesses of the individual layers, it is possible to create advanced materials, which exhibit a superior combination of strength, hardness, and ductility, i.e., properties, which are not achievable in single-layer cast or wrought titanium alloys or in standalone MMCs. To identify the features responsible for the enhanced properties, we examined the microstructure of the 3D-printed MMC layers and the interface with the base materials in detail. Ballistic tests are conducted on the layered MMC/alloy materials to evaluate their suitability for use in bullet-resistant applications. The effects of microstructure, layer thickness, and the combination of constituent materials on protective performance are analysed to optimise the balance of desirable properties. These materials are also compared with other types of 3D-printed layered and homogeneous titanium-based materials in terms of ballistic resistance. Their potential place among other armour materials is discussed.

Keywords: Ti-based materials, metal matrix composites, additive manufacturing, 3D printing with electron beam and wire, hard particles, microstructure, terminal ballistic testing.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, D.G. Savvakin, B. Fikus, J. Sienkiewicz, O.O. Stasiuk, D.V. Oryshych, V.I. Nevmerzhytsky, and V.P. Tkachuk, Advanced Layered Titanium-Based Materials 3D-Printed with Electron Beam and Cored Wire Approach, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


References  
  1. G. Luetjering and J.C. Williams, Titanium (Berlin: Springer: 2007); https://doi.org/10.1007/978-3-540-73036-1
  2. M. Peters, J. Kumpfert, C.H. Ward, and C. Leyens, Adv. Eng. Mater., 5, No. 6: 419–427 (2003); https://doi.org/10.1002/adem.200310095
  3. F.H.S. Froes, M.N. Gungor, and M. Ashraf Imam, JOM, 59, No. 6: 28–31 (2007). https://doi.org/10.1007/s11837-007-0074-8
  4. M. Bunck, R. Salber, and T. Stoyanov, Trans. Indian Natl. Acad. Eng., 9: 141–154 (2024); https://doi.org/10.1007/s41403-023-00436-5
  5. D. Miracle, Compos. Sci. Technol., 65, Nos. 15–16: 2526–2540 (2005); https://doi.org/10.1016/j.compscitech.2005.05.027
  6. P.E. Markovsky, D.G. Savvakin, O.M. Ivasishin, V.I. Bondarchuk, and S.V. Prikhodko, J. Mater. Eng. Perform., 28, No. 9: 5772–5792 (2019); https://doi.org/10.1007/s11665-019-04263-0
  7. S.V. Prikhodko, O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, and O.O. Stasiuk, NATO Science for Peace and Security Series B: Physics and Biophysics (Dordrecht, Netherlands: Springer: 2020), pp. 127–140; https://doi.org/10.1007/978-94-024-2021-0_13
  8. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30, No. 7: 5307–5322 (2021); https://doi.org/10.1007/s11665-021-05770-9
  9. D. Kovalchuk and V.I. Melnyk, Journal of Materials Engineering and Performance, 31 No. 8: 6069–6082 (2022); https://doi.org/10.1007/s11665-022-06994-z
  10. D. Kovalchuk, O. Ivasishin, and D. Savvakin, MATEC Web Conf., 321: 03014 (2020); https://doi.org/10.1051/matecconf/202032103014
  11. P.E. Markovsky, D.V. Kovalchuk, S.V. Akhonin, D.G. Savvakin, O.O. Stasiuk, D. Shwab, D.V. Oryshych, M.A. Skoryk, and V.P. Tkachuk, New approach for manufacturing Ti–6Al–4V+40%TiC metal-matrix composites by 3D printing using conic electron beam and cored wire. Pt. 1: Main features of the process, microstructure formation and basic characteristics of 3D printed material, Prog. Phys. Met., 24, No. 4: 715–740 (2023); https://doi.org/10.15407/ufm.24.04.715
  12. O.M. Іvasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.A. Golub, V.I. Mirnenko, S.H. Sedov, V.А. Kurban, and S.L. Antonyuk, Microstructure and properties of titanium-based materials promising for antiballistic protection, Prog. Phys. Met., 20, No. 2: 285–309 (2019); https://doi.org/10.15407/ufm.20.02.285
  13. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, M.N. Rad, and S.V. Prikhodko, J. Mater. Process. Technol., 269: 172–181 (2019); https://doi.org/10.1016/j.jmatprotec.2019.02.006
  14. P.E. Markovsky, O.M. Ivasishin, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, D.V. Kovalchuk, S.H. Sedov, V.A. Golub, and V.V. Buznytskyi, Titanium-based layered armour elements manufactured with 3D-printing approach, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1361–1375 (2022); https://doi.org/10.15407/mfint.44.10.1361
  15. B. Fikus, K. Piasta, P. Markovsky, D. Kovalchuk, J. Dobrowolska, and J. Sienkiewicz, Abstr. 34th Int. Symp. Ballistics (Destech Publications, Inc.: 2025); https://doi.org/10.12783/ballistics25/37227
  16. D.V. Kovalchuk, D.G. Savvakin, J. Janiszewski, B. Fikus, K. Piasta, V. Nevmerzhytskiy, V. Tkachuk, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, and P.E. Markovsky, Abstr 34th Int. Symp. Ballistics (Destech Publications, Inc.: 2025); https://doi.org/10.12783/ballistics25/37228
  17. P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, B. Fikus, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, V.I. Nevmerzhytskyi, and V.I. Bondarchuk, New approach for manufacturing Ti–6Al–4V+40%TiC metal-matrix composites by 3D printing using conic electron beam and cored wire. Pt. 2: Layered MMC/Alloy materials, their main characteristics, and possible application as ballistic resistant materials, Prog. Phys. Met., 24, No. 4: 741–763 (2023); https://doi.org/10.15407/ufm.24.04.741
  18. M. Walicki, J. Janiszewski, and K. Cieplak, J. Theor. Appl. Mech., 60, No. 1: 129–140 (2022); https://doi.org/10.15632/jtam-pl/144793
  19. A.M. Diederen, J.P.F. Broos, S.N. van Trigt, and M.C.P. Peijen, Abstr. Meeting on ‘Cost Effective Application of Titanium Alloys in Military Platforms’, for NATO AVT Panel (Loen, Norway, 9–11 May 2001); https://www.researchgate.net/publication/268740375
  20. M.L. Bekci, B.H. Canpolat, E. Usta, M.S. Guler, and Ö.N. Cora, Eng. Sci. Technol. Int. J., 24, No. 4: 990–995 (2021); https://doi.org/10.1016/j.jestch.2021.01.001
  21. SSAB. Armox Protection Plate. Protection Steel Buildings data sheet; https://ssabwebsitecdn.azureedge.net/-/media/files/en/armox/armox-protectionsteel-in-buildings-en.pdf?m=20170619110513
  22. E. Gode, A. Teoman, B. Çetin, K. Tonbul, K. Davut, and M.C. Kuşhan, Eng. Sci. Technol. Int. J., 38: 101337 (2023); https://doi.org/10.1016/j.jestch.2023.101337
  23. J.C. Fanning, Military applications for β titanium alloys, J. Mater. Eng. Perform., 14: 686–690 (2005); https://doi.org/10.1361/105994905X75457
  24. J.C. Fanning, Abstr. World Conf. Titanium-2007 (The Japan Institute of Metals: 2007), pp. 487–490.
  25. The Effect of Thermo-Mechanical Processing on the Ballistic Limit Velocity of Extra Low Interstitial Titanium Alloys Ti-6Al-4V, US Army Research Laboratory Report ARL-MR-486, July 2000.
  26. B. Bhav Singh, G. Sukumar, A. Bhattacharjee, K. Siva Kumar, T. Balakrishna Bhat, and A.K. Gogia, Mater. & Des. (1980–2015), 36: 640–649 (2012); https://doi.org/10.1016/j.matdes.2011.11.030
  27. P. Markovsky, J. Janiszewski, D. Savvakin, O. Stasyuk, B. Fikus, V. Samarov, V. Ellison, and S. V. Prikhodko, Def. Technol., 39: 1 (2024); https://doi.org/10.1016/j.dt.2024.04.002
  28. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Additive manufacturing of titanium-based materials using electron beam wire 3D printing approach: peculiarities, advantages, and prospects, Prog. Phys. Met. 24, No. 1: 75–105 (2023); https://doi.org/10.15407/ufm.24.01.075
  29. P.E. Markovsky, J. Janiszewski, V.I. Bondarchuk, O.O. Stasyuk, D.G. Savvakin, M.A. Skoryk, K. Cieplak, P. Dziewit, and S.V. Prikhodko, Metals, 10, No. 11: 1404 (2020); https://doi.org/10.3390/met10111404
  30. M. Ziętal, Testing of the Ti–6Al–4V alloy with addition of TiC (Master’s thesis) (Supervisor: J. Sienkiewicz) (Warsaw, Military University of Technology: 2023).
  31. D.V. Kovalchuk, V.I. Nevmerzhytsky, V.P. Tkachuk, S.V. Akhonin, S.L. Schwab, D.G. Savvakin, D.V. Vedel, O.O. Stasiuk, D.V. Oryshych, and P.E. Markovsky, Ti-based metal-matrix composites reinforced with TiC or TiB particles obtained by electron-beam 3D printing using a cored wire, Metallofiz. Noveishie Tekhnol., 47, No. 8: 875–889 (2025); https://doi.org/10.15407/mfint.47.08.0875
  32. D. Vedel, O. Stasiuk, D. Kovalchuk, D. Savvakin, V. Tkachuk, S. Akhonin, S. Schwab, and P. Markovsky, J. Alloy. Compd., 1027: 180617 (2025); https://doi.org/10.1016/j.jallcom.2025.180617
  33. M. Wells, M.S. Burkins, J.C. Fanning, and B. Roopchand, Abstr. Proc. Titanium World Conf. ‘Titanium 99, Science and Technology’ (7–11 June, 1999, Saint Petersburg), vol. 2, pp. 11763–1170.
  34. J.C. Fanning, Abstr. Proc. Titanium World Conf. ‘Titanium 99, Science and Technology’ (7–11 June 1999, Saint Petersburg), vol. 2, pp. 1171–1178.
  35. C. Zheng, F. Wang, X. Cheng, K. Fu, J. Liu, Y. Wang, T. Liu, and Z. Zhu, Mater. Sci. Eng., 608: 53–62 (2014); https://doi.org/10.1016/j.msea.2014.04.032
  36. Ballistic Performance of Titanium Alloys: Ti–6Al–4V Versus Russian Titanium (Army Research Laboratory Report ARL-CR-0533, February 2004).
  37. D.V. Kovalchuk, D.G. Savvakin, J. Janiszewski, B. Fikus, K. Piasta, V. Nevmerzhytskiy, V. Tkachuk, O. O. Stasiuk, D.V. Oryshych, M.A. Skoryk, J. Sienkiewicz, and P.E. Markovsky, Sci. Rep., 15: 12767 (2025); https://doi.org/10.1038/s41598-025-97087-z
  38. STANAG 2920 NATO; https://velmet.ua/en/stanag_2920_nato.html
  39. K.M. Kpenyigba, T. Jankowiak, A. Rusinek, R. Pesci, and B. Wang, Int. J. Impact Eng., 79: 83–94 (2015); https://doi.org/10.1016/j.ijimpeng.2014.10.007
  40. A.M. Diederen, J.P.F. Broos, and M.C.P. Peijen, Lightweight Armor Systems Symposium (1999); https://publications.tno.nl/publication/34616579/rczAJf/diederen-1999-modern.pdf
  41. A.M. Diederen, J.P.F. Broos, S.N. Trigt, and M.C.P. Peijen, Specialists’ Meeting on ‘Cost Effective Application of Titanium Alloys in Military Platforms’, for NATO AVT Panel (Loen, Norway, 9–11 May 2001); https://www.researchgate.net/publication/268740375_Ballistic_protection_against_armour_piercing_projectiles_using_titanium_base_armour
  42. E. Palta, M. Gutowski, and H. Fang, Int. J. Solids Struct., 136–137: 279–294 (2018); https://doi.org/10.1016/j.ijsolstr.2017.12.021
  43. P.E. Markovsky, J. Janiszewski, S.V. Akhonin, V.I. Bondarchuk, V.O. Berezos, K. Cieplak, O.P. Karasevska, and M. A. Skoryk, Mechanical behaviour of Ti–15Mo alloy produced with electron-beam cold hearth melting depending on deformation rate and in comparison with other titanium alloys, Prog. Phys. Met., 23, No. 3: 438–475 (2022); https://doi.org/10.15407/ufm.23.03.438
  44. C.W. Ong, C.W. Boey, R.S. Hixson, and J.O. Sinibaldi, Int. J. Eng., 38, No. 5: 369–383 (2011); https://doi.org/10.1016/j.ijimpeng.2010.12.003
  45. A.E. Davis, J.R. Kennedy, D. Strong, D. Kovalchuk, S. Porter, and P.B. Prangnell, Materialia, 20: 101202 (2021); https://doi.org/10.1016/j.mtla.2021.101202
  46. J.P.F. Broos, S.N. van Trigt, and M.C.P. Peijen, Specialists’ Meeting on Cost Effective Application of Titanium Alloys in Military Platforms for NATO AVT Panel (2001); https://www.researchgate.net/publication/268740375
  47. M.L. Bekci, B.H. Canpolat, E. Usta, M.S. Guler, and O.N. Cora, Eng. Sci. Technol. Int. J., 24, No. 4: 990–995 (2021); https://doi.org/10.1016/j.jestch.2021.01.001
  48. SSAB, Armox Protection Plate, Protection Steel Buildings Data Sheet; https://ssabwebsitecdn.azureedge.net/-/media/files/
  49. M.E. Backman and W. Goldsmith, Int. J. Eng. Sci., 16, No. 1: 1–99 (1978); https://doi.org/10.1016/0020-7225(78)90002-2
  50. Y.-H. Shin, J.-H. Chung, and J.-H. Kim, Int. J. Nav. Archit. Ocean Eng., 10, No. 6: 762–781 (2018); https://doi.org/10.1016/j.ijnaoe.2017.10.007
  51. D. Acar, B.H. Canpolat, and O.N. Cora, Eng. Sci. Technol. Int. J., 51: 101653 (2024); https://doi.org/10.1016/j.jestch.2024.101653
  52. B. Cheeseman, W. Gooch, and M. Burkins, Preprint 24th Int. Ballistics Symposium (New Orleans, LA, USA, 22–26 September 2008); https://www.researchgate.net/publication/292393974_Ballistic_Evaluation_of_Aluminum_2139-T8
  53. L. Jones, R.D. DeLorme, M.S. Burkins, and W.A. Gooch, Abstr. 23rd Int. Symposium on Ballistics (Tarragona, Spain, 16–20 April 2007); https://www.researchgate.net/publication/268379604
  54. E. Medvedovski, Ceram. Int., 36, No. 7: 2103–2115 (2010); https://doi.org/10.1016/j.ceramint.2010.05.021
  55. A. Degnah, H. F. Alnaser, I. Al-Helaly, M. Y. Haddad, A. Al-Aredai, F. Alsaif, S. Alkhaibari, M. Alotaibi, M. Abuobaid, and A. Kurdi, J. Mater. Eng. Perform., 34: 8367–8377 (2025); https://doi.org/10.1007/s11665-024-09923-4
  56. P. C. den Reijer, Impact on Ceramic Faced Armour (PhD thesis) (Delft, the Netherland: Delft University of Technology: 1991).
  57. F. Cui, G. Wu, T. Ma, and W. Li, Def. Sci. J., 67, No. 3: 260 (2017); https://doi.org/10.14429/dsj.67.10664
  58. E. Medvedovski, Ceram. Int., 36, No. 7: 2117–2127 (2010); https://doi.org/10.1016/j.ceramint.2010.05.022
  59. A. Tasdemirci, G. Tunusoglu, and M. Güden, Int. J. Eng., 44: 1–9 (2012); https://doi.org/10.1016/j.ijimpeng.2011.12.005
  60. C.W. Ong, C.W. Boey, R.S. Hixson, and J.O. Sinibaldi, Int. J. Impact Eng., 38, No. 5: 369–383 (2011); https://doi.org/10.1016/j.ijimpeng.2010.12.003
  61. J.K. Lee, Analysis of Multi-Layered Materials under High Velocity Impact Using CTH (Theses and Dissertations: 2008), 2685
  62. E. Palta, M. Gutowski, and H. Fang, Int. J. Solids Struct., 136–137: 279–294 (2018); https://doi.org/10.1016/j.ijsolstr.2017.12.021
  63. https://en.wikipedia.org/wiki/Chobham_armour