Current State of Research in the Field of High-Entropy Alloys’ Production in Global Practice

KVON S.V., KULIKOV V.Yu., ARINOVA S.K., and ТUGANBAYEVA А.А.

Abylkas Saginov Karaganda Technical University, 56 Nursultan Nazarbayev Ave., 100003 Karaganda, Kazakhstan

Received / Final version: 18.05.2025 / 25.10.2025 Download PDF logo PDF

Abstract
Metallic multicomponent high-entropy alloys (HEAs) represent a novel class of materials, which are currently the focus of extensive research. This article reviews the evolution of studies in the field of HEAs and identifies potential application areas for these materials. Recent investigations are discussed, particularly addressing the influence of various elements on the properties of HEAs with different base compositions, the formation of their microstructures, and developments in alloy design. The analysis indicates that HEAs are predominantly manufactured from pure metal powders using advanced and complex technologies such as plasma sintering and magnetron sputtering. To reduce the production costs of HEAs compared to conventional materials, increasing attention is being directed towards the development of so-called quasi-high-entropy alloys (QHEAs). The fundamental approach to creating QHEAs is analogous to that used for HEAs: a multicomponent system comprising at least five elements. However, strict equiatomic concentrations are not maintained, and requirements for charge materials and melting processes are considerably relaxed. This strategy enhances the commercial viability of QHEAs, while retaining properties comparable to those of HEAs.

Keywords: high-entropy alloy (HEA), quasi-high-entropy alloy (QHEA), equiatomic concentration, ferroalloys, production cost.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: S.V. Kvon, V.Yu. Kulikov, S.K. Arinova, and А.А. Тuganbayeva, Current State of Research in the Field of High-Entropy Alloys’ Production in Global Practice, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


References  
  1. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122: 448 (2017); https://doi.org/10.1016/j.actamat.2016.08.081
  2. J.-W. Yeh, Recent Progress in High Entropy Alloys, Ann. Chim. Sci. Mat., 31, No. 7: 633 (2006); https://doi.org/10.3166/acsm.31.633-648
  3. D.B. Miracle, B. Majumdar, K. Wertz, and S. Gorsse, New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scr. Mater., 127: 1 (2016); https://doi.org/10.1016/j.scriptamat.2016.08.001
  4. B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys (Oxford: Butterworth-Heinemann: 2014), p. 218; https://doi.org/10.1016/B978-0-12-800251-3.00002-X
  5. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, Ts.-Sh. Chin, T.-Ts. Shun, Ch.-H. Tsau, and Sh.-Y. Chang, Nanostructured high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, No. 8: 299 (2004); https://doi.org/10.1002/adem.200300567
  6. S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Sci., 85, No. 10: 1404 (2003).
  7. A. Takeuchi and A. Inoue, Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18, No. 9: 1779 (2010); https://doi.org/10.1016/j.intermet.2010.06.003
  8. L.A. Dominguez, R. Goodall, and I. Todd, Prediction and validation of quaternary high entropy alloys using statistical approaches, Mater. Sci. Technol., 31, No. 10: 1201 (2015); https://doi.org/10.1179/1743284715Y.0000000019
  9. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 66, No. 10: 1984 (2014); https://doi.org/10.1007/s11837-014-1085-x
  10. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61: 1 (2014); https://doi.org/10.1016/j.pmatsci.2013.10.001
  11. B. Cantor, Multicomponent and high entropy alloys, Entropy, 16, No. 9: 4749 (2014); https://doi.org/10.3390/e16094749
  12. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Microstructure characterization of AlCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36, No. 4: 881 (2005); https://doi.org/10.1007/s11661-005-0283-0
  13. A. Gali and E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39: 74 (2013); https://doi.org/10.1016/j.intermet.2013.03.018.7
  14. J.-W. Yeh, Recent Progress in High Entropy Alloys, Ann. Chim. Sci. Mat., 31, No. 7: 633 (2006); https://doi.org/10.3166/acsm.31.633-648
  15. C.-J. Tong, M.-R. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, S.-J. Lin, and S.-Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36A, No. 5: 1263 (2005); https://doi.org/10.1007/s11661-005-0218-9
  16. M.-H. Tsai and J.-W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett., 2, No. 3: 107 (2014); https://doi.org/10.1080/21663831.2014.912690
  17. J.-W. Yeh, Y.-L. Chen, S.-J. Lin, and S.-K. Chen, High-entropy alloys — a new era of exploitation, Mater. Sci. Forum, 560: 1 (2007); https://doi.org/10.4028/www.scientific.net/MSF.560.1
  18. Y. Zhang, X. Yang, and P.K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM, 64, No. 7: 830 (2012); https://doi.org/10.1007/s11837-012-0366-5
  19. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377: 213 (2004); https://doi.org/10.1016/j.msea.2003.10.257
  20. C.C. Tung, J.W. Yeh, T.T. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 61, No. 1: 1 (2007); https://doi.org/10.1016/j.matlet.2006.03.140
  21. V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, and M. Braic, Nanostructured multi-element (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol., 211: 117 (2012); https://doi.org/10.1016/j.surfcoat.2011.09.033
  22. S. Lei, S. Guo, E. Khosravi, and X. Yang, The Stability and Stiffness of TaNbHfZrTi Alloy from First Principles Simulation, MS&T 2012 Proc. (Pittsburgh: AISTECH, 2012), p. 196.
  23. L. Lilensten, J.P. Couzinie, L. Perriere, J. Bourgon, N. Emery, and I. Guillot, New structure in refractory high-entropy alloys, Mater. Lett., 132: 123 (2014); https://doi.org/10.1016/j.matlet.2014.06.064
  24. C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, and A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd., 583: 162 (2014); https://doi.org/10.1016/j.jallcom.2013.08.102
  25. O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J. Mater. Sci., 47, No. 18: 6522 (2012); https://doi.org/10.1007/s10853-012-6582-0
  26. O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high entropy alloys, Acta Mater., 68: 214 (2014); https://doi.org/10.1016/j.actamat.2014.01.029
  27. V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen, and L.J. Kecskes, Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM, 66, No. 10: 2021 (2014); https://doi.org/10.1007/s11837-014-1113-x
  28. X. Yang, S.Y. Chen, J.D. Cotton, and Y. Zhang, Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium, JOM, 66, No. 10: 2009 (2014); https://doi.org/10.1007/s11837-014-1059-z
  29. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch, A novel low density, high hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3, No. 2: 95 (2014); https://doi.org/10.1080/21663831.2014.985855
  30. B. Cantor, K.B. Kim, and P.J. Warren, Novel multicomponent amorphous alloys, Mater. Sci. Forum, 386–388: 27 (2002); https://doi.org/10.4028/www.scientific.net/MSF.386-388.27
  31. K.-H. Cheng, C.-H. Lai, S.-J. Lin, and J.-W. Yeh, Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets, Ann. Chim. Sci. Mat., 31, No. 7: 723 (2006); https://doi.org/10.3166/acsm.31.723-736
  32. K.-H. Cheng, C.-H. Lai, S.-J. Lin, and J.-W. Yeh, Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering, Thin Solid Films, 519, No. 10: 3185 (2011); https://doi.org/10.1016/j.tsf.2010.11.034
  33. M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings, Surf. Coat. Technol., 221: 118 (2013); https://doi.org/10.1016/j.surfcoat.2013.01.036
  34. H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, and J.-W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100–xNx, Surf. Coat. Technol., 206, Nos. 19–20: 4106 (2012); https://doi.org/10.1016/j.surfcoat.2012.03.096
  35. V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, and M. Braic, Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol., 211: 117 (2012); https://doi.org/10.1016/j.surfcoat.2011.09.033
  36. C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A, 35, No. 5: 1465 (2004); https://doi.org/10.1007/s11661-004-0254-x
  37. L. Yang, Y. Li, Z. Wang, W. Zhao, and C. Qin, Nanoporous Quasi-High-Entropy Alloy Microspheres, Metals, 9, No. 3: 345 (2019); https://doi.org/10.3390/met9030345
  38. C.-M. Lin and H.-L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy, Mater. Chem. Phys., 128, Nos. 1–2: 50 (2011); https://doi.org/10.1016/j.matchemphys.2011.02.022
  39. C. Li, J.C. Li, M. Zhao, and Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd., 475, Nos. 1–2: 752 (2009); https://doi.org/10.1016/j.jallcom.2008.07.124
  40. H.B. Cui, L.F. Zheng, and J.Y. Wang, Microstructure evolution and corrosion behavior of directionally solidified FeCoNiCrCu high entropy alloy, Appl. Mech. Mater., 66–68: 146 (2011); https://doi.org/10.4028/www.scientific.net/AMM.66-68.146
  41. J. Gu, S. Ni, Y. Liu, and M. Song, Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment, Mater. Sci. Eng. A, 755: 289 (2019); https://doi.org/10.1016/j.msea.2019.04.025
  42. X. Ma, J. Chen, X. Wang, Y. Hu, and Y. Hue, Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy, J. Alloys Compd., 795: 45 (2019); https://doi.org/10.1016/j.jallcom.2019.04.296
  43. Z. Zhang, J. Liang, S.L.I. Chan, J. Ju, Y. Zhou, and J. Wang, Synergistic strengthening mechanisms and multiple deformation behaviors of in-situ synthesized Al2O3 nanoparticles reinforced CoCrFeNiAl0.3 high entropy alloy matrix nanocomposite with heterogeneous microstructure, Mater. Sci. Eng. A, 924: 147785 (2025); https://doi.org/10.1016/j.msea.2025.147785
  44. I. Moravcik, J. Cizek, J. Zapletal, Z. Kovasova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, and I. Dlouhy, Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering, Mater. Des., 119: 141 (2017); https://doi.org/10.1016/j.matdes.2017.01.036
  45. K. Guo, Y. Zhang, C. Chen, Y. Tu, M. Chang, and E. Tang, Discharge and ignition mechanism of high-entropy alloy induced by crack propagation under quasi-static compressive load, Intermetallics, 170: 108312 (2024); https://doi.org/10.1016/j.intermet.2024.108312
  46. F. Prusa, A. Senkova, V. Kusera, J. Capek, and D. Vojtech, Properties of high-strength ultrafine-grained CoCrFeNiMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 734: 341 (2018); https://doi.org/10.1016/j.msea.2018.08.014
  47. V. Dolique, A.L. Thomann, and P. Brault, High-entropy alloys deposited by magnetron sputtering, IEEE Trans. Plasma Sci., 39, No. 11: 2478 (2011); https://doi.org/10.1109/TPS.2011.2157942
  48. H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, and C.C. Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surf. Coat. Technol., 202: 3360 (2008); https://doi.org/10.1016/j.surfcoat.2007.12.014
  49. H.N. Trofimenko, I.Yu. Efimochkin, and A.N. Bolshakova, Aviats. Mater. Tekhnol., No. 2 (51): 3 (2018).
  50. Y. Geng, S.V. Konovalov, and X. Chen, Research status and application of the high-entropy and traditional alloys fabricated via the laser cladding, Prog. Phys. Met., 21, No. 1: 26–45 (2020); https://doi.org/10.15407/ufm.21.01.026
  51. A.V. Zavdoveev, T. Baudin, D.G. Mohan, D.L. Pakula, D.V. Vedel, and M.A. Skoryk, Basics of additive manufacturing processes for high-entropy alloys, Prog. Phys. Met., 24, No. 3: 561–592 (2023); https://doi.org/10.15407/ufm.24.03.561
  52. S.V. Maksymova and V.E. Sukhoyars’kyy, Structure of high-entropy solders and soldered seams based on transition d-metals, Metallofiz. Noveishie Tekhnol., 45, No. 1: 75–93 (2023); https://doi.org/10.15407/mfint.45.01.0075
  53. K. Chong, Y. Gao, Z. Zhang, X. Liang, and Y. Zou, Glass forming ability and thermal stability of (ZrTiHfNi)100xNbx high entropy amorphous alloy, J. Mater. Res. Technol., 36: 699 (2025); https://doi.org/10.1016/j.jmrt.2025.03.132
  54. W. Gao, M. Feng, C. Chen, and G. Lian, Microstructure evolution, wear resistance and corrosion resistance of CoCrCu0.5FeNiSix high-entropy alloy coatings fabricated by laser cladding, J. Mater. Res. Technol., 36: 5539 (2025); https://doi.org/10.1016/j.jmrt.2025.04.210
  55. Z. Wang, F. Xing, G. Xu, W. Liu, and H. Bian, Microstructure and mechanical properties of additive manufactured TiC-reinforced Fe55Cr25Co10Ni10 high-entropy alloy composites, Opt. Laser Technol., 187: 112870 (2025); https://doi.org/10.1016/j.optlastec.2025.112870
  56. B.-S. Lou, C.-L. Li, M. Annalakshmi, T.-Y. Hung, and J.-W. Lee, Exploring the effect of Ti and Al contents on the microstructural, mechanical, and corrosion resistance features of VNbMoTaWTiAlN refractory high entropy alloy coatings, Mater. Chem. Phys., 341: 130901 (2025); https://doi.org/10.1016/j.matchemphys.2025.130901
  57. F. Li, R. Liu, K. Ma, Y. Zhao, X. Fu, X. Zhang, Y. Ling, and J. Li, Tensile properties and molecular dynamics simulation of FeCrMnAlxCu high-entropy alloys, Vacuum, 238: 114219 (2025); https://doi.org/10.1016/j.vacuum.2025.114219
  58. Y. Yin, J. Hu, X. Xu, Q. Yang, Y. Zhang, D. Yan, and Z. Li, Microstructural evolution and mechanical behavior of (WMoNbVTa)C–Co high-entropy cemented carbides: The role of Ta alloying, J. Alloys Compd., 1022: 180076 (2025); https://doi.org/10.1016/j.jallcom.2025.180076
  59. Y. Li, X. Jin, A. Lan, and J. Qiao, Superior strength-ductility synergy of FeMnCrNiAlSi high entropy alloy with heterogeneous structures, J. Alloys Compd., 1025: 180279 (2025); https://doi.org/10.1016/j.jallcom.2025.180279
  60. F.-C. Zhao, G.-N. Ji, X.-M. Zhao, R.-D. Zhao, and F.-F. Wu, The role of copper in transforming CuxCoCrNiAl high-entropy alloys for enhanced strength and ductility, Mater. Charact., 223: 114973 (2025); https://doi.org/10.1016/j.matchar.2025.114973
  61. H. Yang, Z. Zeng, T. Xiong, Z. Shao, Q. Lu, and S. Zhang, High-temperature mechanical properties and radiation resistance properties of reduced-activation high-entropy alloys FeMnCrTi0.1, J. Alloys Compd., 1014: 178746 (2025); https://doi.org/10.1016/j.jallcom.2025.178746
  62. Y. Guo, H. Wang, X. Guo, D. Cong, J. Yang, J. Li, and Z. Li, Ultra-wide working temperature range of elastocaloric effect in a (Ti25Zr10Hf15Ni25Cu25)99.6B0.4 high entropy shape memory alloy, J. Alloys Compd., 1021: 179683 (2025); https://doi.org/10.1016/j.jallcom.2025.179683
  63. Y. Li, S. Liang, J. Gong, W. Wu, Y. Wang, and Z. Chen, Effect of Ti on the structure and mechanical properties of TixVNbMo (x  0.5, 1.0, 1.5, 2.0) refractory high-entropy alloys: A combined first principles and experimental study, Intermetallics, 181: 108760 (2025); https://doi.org/10.1016/j.intermet.2025.108760
  64. Y. Heidari, Kh. Gheisari, and M. Yeganeh, Effect of Cr content on the structure and corrosion properties of (FeCoNi)0.75Cu0.25−xCrx high entropy alloys in 1 M H2SO4, J. Mater. Res. Technol., 35: 5322 (2025); https://doi.org/10.1016/j.jmrt.2025.02.184
  65. C. Che, M. Jiang, A. Li, K. Kang, J. Zhang, D. Huang, and G. Li, Effect of Ni content on the corrosion resistance of CoCr0.8FeTi0.4Nix high entropy alloys in 3.5 wt% NaCl solution, J. Alloys Compd., 1016: 178900 (2025); https://doi.org/10.1016/j.jallcom.2025.178900
  66. Z. Li, W. Wang, X. Chen, B. Peng, H. Xing, and J. Yang, Effect of the addition of Sc element on the microstructure and properties of Al80Li5Mg5Zn5Cu5 high-entropy alloy, J. Mater. Res. Technol., 34: 1436 (2025); https://doi.org/10.1016/j.jmrt.2024.12.074
  67. X. Zhang, P. Bai, F. Wang, H. Zhao, X. Zhou, S. Wang, J. Gao, C. Zhang, H.-H. Wu, and X. Mao, Atomistic insight into the effects of W content on the creep behaviors of NbMoTaW high-entropy alloys, J. Mater. Res. Technol., 36: 3289 (2025); https://doi.org/10.1016/j.jmrt.2025.03.298
  68. S. Liu, B. Dou, S. Sun, L. Wang, Y.-J. Liang, and Y. Xue, Simultaneous improvement in strength and ductility of 3D-printed refractory high-entropy alloys by addition of molybdenum, Mater. Sci. Eng. A, 928: 148042 (2025); https://doi.org/10.1016/j.msea.2025.148042
  69. K. Sikdar, A. Mahata, C. Chattopadhyay, D. Roy, and R. Mitra, Influence of Y (yttrium) doping on thermal stability of nanocrystalline AlCoCrCuFeNi high entropy alloy, Intermetallics, 179: 108638 (2025); https://doi.org/10.1016/j.intermet.2025.108638
  70. J.-D. Zhang, L. Zhang, H.Z. Ma, and N. Li, Effects of ZrC content on microstructures and properties of ZrC/AlCoCrFeNi high-entropy alloys composites, J. Alloys Compd., 1010: 178308 (2025); https://doi.org/10.1016/j.jallcom.2024.178308
  71. P. Gao, K. Wang, Y. Sheng, T. Cui, F. Li, Z. Wang, Y. Fu, F. Dai, S. Chen, B. Li, and H. Guo, Microstructure and properties of laser-cladded CoCrMoNb(TiC)x high entropy alloy coatings with various TiC contents, Surf. Coat. Technol., 505: 132116 (2025); https://doi.org/10.1016/j.surfcoat.2025.132116
  72. Q. Huang, Y. Li, P. Zhang, Y. Yang, S. Zhou, P. Ren, Q. Wang, W. Li, and F. Wang, The oxidation mechanisms of Pt and reactive elements modified AlCoCrFeNi2.1 eutectic high-entropy alloy at high temperature, J. Mater. Res. Technol., 36: 4602 (2025); https://doi.org/10.1016/j.jmrt.2025.04.138
  73. Y.-Y. Tan, J.-X. Chen, M.-Y. Su, T. Li, Z.-J. Chen, Y. Chen, H.-Y. Wang, D.-S. Wu, Z.-J. Tan, H.-L. Lu, L.-H. He, and L.-H. Dai, Insight into the local atomic structure effects on deformation behavior of high entropy alloys by in-situ neutron diffraction and EXAFS, Mater. Sci. Eng. A, 932: 148231 (2025); https://doi.org/10.1016/j.msea.2025.148231
  74. Y. Tang, F. Zhang, Y. Xiong, Y. Hu, and H. Feng, Interface microstructure and strengthening mechanisms of medium-entropy alloy FeCoNiCr particle reinforced titanium composites, Mater. Sci. Eng. A, 935: 148359 (2025); https://doi.org/10.1016/j.msea.2025.148359
  75. Z. Yang, H.T. He, J.X. Fang, T. Sun, B. Ma, H.T. Chen, T. Fu, J.T. Wei, M. Wen, and P. He, Microstructure and mechanical properties of carbide-reinforced Ta-W-based refractory medium-entropy alloys prepared by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 130: 107182 (2025); https://doi.org/10.1016/j.ijrmhm.2025.107182
  76. L. Yu, Y.-Q. Yan, W.-T. Zhang, H. Zhang, J. Wu, C. Liu, L. Yao, J. Lu, and G. Wu, Grain size effect on corrosion behaviour of TiZrNb medium-entropy alloys, J. Alloys Compd., 1025: 180338 (2025); https://doi.org/10.1016/j.jallcom.2025.180338
  77. G.M. Pillai, K. Singh, S. Thangaraju, S. Jha, and V. Kumar, Corrosion and wear study of medium entropy Pb–Sn–Cu alloy for coating application, J. Alloys Metall. Syst., 9: 100156 (2025); https://doi.org/10.1016/j.jalmes.2025.100156
  78. D. Wu, B. Li, Y. Shi, X. Hou, C. Li, Y. Gao, P. Bai, Y. Liu, and C. Liang, Effects of different Al contents on mechanical properties and high temperature oxidation resistance of AlxCoCr0.6NiV0.6 high entropy alloy, J. Alloys Compd., 1025: 180348 (2025); https://doi.org/10.1016/j.jallcom.2025.180348
  79. S.V. Maksymova, V.V. Voronov, and P.V. Kovalchuk, Influence of adhesive-active components on thermodynamic parameters of high-entropy NiCoCrAl–(Ti, Nb) Brazing Filler Metals, Metallofiz. Noveishie Tekhnol., 46, No. 8: 811–823 (2024); https://doi.org/10.15407/mfint.46.08.0811
  80. V.S. Klochko, A.V. Korniyets, I.V. Kolodiy, O.O. Kondratov, V.I. Sokolenko, V.I. Spitsyna, T.M. Tykhonovska, and N.A. Yayes, Ultrasonic investigation of high-entropy Al0.5CoCrCuFeNi alloy at low temperature, Metallofiz. Noveishie Tekhnol., 45, No. 4: 523–535 (2023); https://doi.org/10.15407/mfint.45.04.0523
  81. R. Liu, R. Lu, A. Wang, Z. Zhu, and H. Wang, First-principles study on local site preference of interstitial oxygen in Ti3Zr1.5NbVAl0.25 high-entropy alloy, Comput. Mater. Sci., 253: 113867 (2025); https://doi.org/10.1016/j.commatsci.2025.113867
  82. J.M. Torralba, A. Meza, S.V. Kumaran, A. Mostafaei, and A. Mohammadzadeh, From high-entropy alloys to alloys with high entropy: A new paradigm in materials science and engineering for advancing sustainable metallurgy, Curr. Opin. Solid State Mater. Sci., 36: 101221 (2025); https://doi.org/10.1016/j.cossms.2025.101221
  83. Z. Yang, S. Wang, R. Cao, W. Tang, J. Chen, J. Li, J. Wang, Z. Wang, and F. He, Abnormal recrystallization kinetics of precipitation-hardened high-entropy alloys, Rev. Mater. Res., 1, No. 2: 100037 (2025); https://doi.org/10.1016/j.revmat.2025.100037
  84. G. Abrantes, B. Alves, D. Gatões, R. Batalha, and P.F. Rodrigues, Design of non-equiatomic low-density alloys inspired by modified high-entropy shape memory alloy, J. Mater. Res. Technol., 36: 72 (2025); https://doi.org/10.1016/j.jmrt.2025.02.059
  85. G.-Y. Wang, W.-C. Hsu, Z.-W. Huang, J.-W. Yeh, and C.-W. Tsai, The growth activation energy of sigma phase in nonequal molar CoCrFeNiV low entropy and high entropy alloys, J. Alloys Compd., 1017: 178863 (2025); https://doi.org/10.1016/j.jallcom.2025.178863
  86. Z. Zhang, Y. Meng, Z. Zhang, Y. Yang, Y. Chen, C. Wang, and Y. He, Predictive and heuristic framework for high entropy alloys design: Integrating solid solution strengthening with machine learning, J. Alloys Compd., 1027: 180484 (2025); https://doi.org/10.1016/j.jallcom.2025.180484
  87. X.-Y. Song, H.-L. Zhao, W. Cheng, X.-G. Li, J.-P. Zhu, Y. Zhang, G. Liu, and X.-B. Liu, Atomic-scale insight into the effect of graphene on the tribological behavior of high-entropy alloys, Mater. Lett., 387: 138252 (2025); https://doi.org/10.1016/j.matlet.2025.138252
  88. S.V. Maksymova, V.V. Voronov, and P.V. Kovalchuk, High-entropy brazing filler metal based on NiCoCrPdGe system for brazing nickel superalloys, Metallofiz. Noveishie Tekhnol., 45, No. 3: 387 (2023); https://doi.org/10.15407/mfint.45.03.0387
  89. D. Li, H. Shi, D. Liang, Z. Liang, L. Zhang, W. Ding, and X. Su, Microstructural evolution and mechanical properties of CrCoFeMnNi high-entropy alloys under femtosecond laser ablation: a molecular dynamics approach, J. Mater. Res. Technol., 35: 6333 (2025); https://doi.org/10.1016/j.jmrt.2025.02.247
  90. Q. Lin and Y. Yan, Hydrogen storage properties of VNbTaTi and VNbTaTiAl high-entropy alloys: A first principles study, Vacuum, 238: 114286 (2025); https://doi.org/10.1016/j.vacuum.2025.114286
  91. B.A. Rusanov, E.V. Sterkhov, A.I. Rusanova, and D.K. Simonov, The Laves phase formation in rapidly quenched Zr–Al–Ni–Co–Cu high-entropy alloy, J. Alloys Metall. Syst., 9: 100165 (2025); https://doi.org/10.1016/j.jalmes.2025.100165
  92. H. Li, D. Zhou, P.E.S. Smith, E. Sharman, H. Xiao, S. Wang, Y. Huang, and J. Jiang, Spectra-based clustering of high-entropy alloy catalysts: improved insight over use of atomic structure, Chem. Sci., 16, No. 11: 4646 (2025); https://doi.org/10.1039/d4sc06552b
  93. Y. Lu, X. Wu, F. Zhang, F. Sun, and X. Dong, Comparative analysis of additive manufacturing techniques and microstructural strengthening mechanisms in Al0.3CoCrFeNiTi0.15 high entropy alloy, Mater. Sci. Eng. A, 934: 148303 (2025); https://doi.org/10.1016/j.msea.2025.148303
  94. Z. Dastjerdi, M. Sharifitabar, and M.S. Afarani, Effect of Cr2O3 purity on the microstructure and hardness of AlTiVCr high entropy alloy prepared by self-propagating high-temperature synthesis, Mater. Chem. Phys., 341: 130942 (2025); https://doi.org/10.1016/j.matchemphys.2025.130942
  95. R. Mu, Y. Wang, S. Niu, K. Sun, and Z. Yang, Stabilized interfacial structure induced by self-dissolved active atoms in the (HfZrTiTaNb)C high-entropy carbide brazed joint using CoCrFeNi alloy, Ceramics International, 51, Iss. 15: 20006 (2025); https://doi.org/10.1016/j.ceramint.2025.02.165
  96. S. Jain, R. Jain, V. Kumar, S. Samal, and J. Lee, Design strategies and mechanical behaviour of high-strength eutectic high-entropy alloys: a comprehensive review, J. Alloys Compd., 1022: 180000 (2025); https://doi.org/10.1016/j.jallcom.2025.180000
  97. C. Wang, X. Yang, X. Sun, H. Kang, and P. Xiao, First-principles and experimental study on structure and properties of CuCrCoFeNixTi high entropy alloy, Intermetallics, 181: 108735 (2025); https://doi.org/10.1016/j.intermet.2025.108735
  98. K. Chakrabarty, A.D. Pope, A. Yadav, W. Yang, J. Ren, V. Rangari, W. Chen, and Y.K. Vohra, High-pressure high-temperature melting and recrystallization of nanolamellar high-entropy alloys, J. Alloys Compd., 1020: 179470 (2025); https://doi.org/10.1016/j.jallcom.2025.179470
  99. H.M. Wang, S.S. Chou, T.T. Wu, G.R. Li, Z.J. Ji, and X. Zong, Microstructure and properties of Fe20Co20Ni40Al20 high-entropy alloy enhanced via deep cryogenic treatment, J. Mater. Res. Technol., 36: 3177 (2025); https://doi.org/10.1016/j.jmrt.2025.04.017
  100. R. Sun, H. Yin, J. Liu, S. Xie, C. Zhang, R. Zhang, Y. Wang, D.F. Khan, and X. Qu, Screening the TiZrHfNbVMoTa refractory high-entropy alloys with multi-property constraints, J. Alloys Compd., 1020: 179284 (2025); https://doi.org/10.1016/j.jallcom.2025.179284
  101. Y. Xu, D. Wang, S. Wu, H. Lu, R. Yao, J. Yang, F. Jiang, and T. Akiyama, Research progress on defect formation mechanism and process optimization of laser cladding high entropy alloy coatings, Opt. Laser Technol., 187: 112819 (2025); https://doi.org/10.1016/j.optlastec.2025.112819
  102. K. Yu, Z. Li, F. Zhou, Y. Li, J. Tang, and Z. Luo, Effect of C content on the microstructural evolution and wear resistance of AlCoCrFeNiTiW high-entropy alloy coatings, Surf. Coat. Technol., 505: 132115 (2025); https://doi.org/10.1016/j.surfcoat.2025.132115
  103. M. Zhang, Y. Wang, Y. Zhou, D. Wang, X. Yang, D. Cheng, A.U.H. Mohsan, J. Tang, and G. Zhang, Surface morphology evolution and tribological properties of laser directed energy deposited CoCrFeNi high-entropy alloys using laser polishing, J. Alloys Compd., 1022: 179893 (2025); https://doi.org/10.1016/j.jallcom.2025.179893
  104. J. Guo, W. Xie, and J. Pu, Tribocorrosion behaviors and mechanisms of in-situ TiC/TiB/Cr2B reinforced CrMnFeCoNi high-entropy alloy composite coatings prepared by laser cladding, Ceramics International, 51, Iss. 18, Pt. B: 26742 (2025); https://doi.org/10.1016/j.ceramint.2025.03.355
  105. A.V. Zavdoveev, O.A. Gaivoronsky, V.D. Poznyakov, A.V. Klapatyuk, D.V. Vedel, T. Baudin, O.A. Los, R.A. Kozin, and M.A. Skoryk, Powder welding wire of Cantor’s high-entropy alloying system for surfacing, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1025 (2022); https://doi.org/10.15407/mfint.44.08.1025
  106. Y. Zeng, Y. He, T. Dou, J. Yang, J. Li, J. Jiang, C. Ying, M. Zheng, C. Tan, and H. Zhang, Dissimilar laser joining of aluminum to steel via a porous FeCoCrNi high entropy alloy coating: Interfacial microstructure, wettability, and mechanical properties, Appl. Surf. Sci., 694: 162809 (2025); https://doi.org/10.1016/j.apsusc.2025.162809
  107. Y. Ruan, C. Yin, X. Liu, D. Zhang, J. Wu, and Z. Zhu, A cobalt-free dual-phase FeCrNiMoSi high-entropy alloy coating with high wear and corrosion resistance compared with FeCoCrNi, J. Alloys Compd., 1024: 180183 (2025); https://doi.org/10.1016/j.jallcom.2025.180183
  108. H.A. Bagliuk, M.V. Marich, S.F. Kirilyuk, O.M. Myslivchenko, O.A. Golubenko, and O.S. Makarenko, Comparative analysis of the structure, phase composition and properties of high-entropy cermets of Ti–Cr–Fe–Ni–C system obtained by powder metallurgy and arc remelting methods, Metallofiz. Noveishie Tekhnol., 45, No. 4: 537 (2023); https://doi.org/10.15407/mfint.45.04.0537
  109. F. Yang, C. Du, S. Tao, Y. Chang, Z. Nie, Z. Wang, and H. Lu, Study on the effect and growth mechanism of micro-arc oxidation coating on AlCoCrFeNi high entropy alloy, J. Alloys Compd., 1020: 179469 (2025); https://doi.org/10.1016/j.jallcom.2025.179469
  110. M.D. Le, T.H. Nguyen, V.D. Nguyen, M.K. Pham, and H.H. Nguyen, The effect of microstructure on mechanical and magnetic properties of FeCoNiAl0.75Nb0.25 high-entropy alloy, RSC Adv., 15, No. 9: 7172 (2025); https://doi.org/10.1039/d5ra00358j
  111. T.O. Kosorukova, Yu.M. Koval’, V.V. Odnosum, V.S. Filatova, G. Gerstein, H.J. Maier, and G.S. Firstov, Structure, Phase composition and mechanical properties for the high entropy solid solutions based upon MnFeCoNiCu system versus collective behaviour of their constituents, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1711 (2022); https://doi.org/10.15407/mfint.44.12.1711
  112. A.O. Perekos, B.M. Mordyuk, V.Z. Voynash, N.V. Danko, and T.G. Kabantsev, Influence of the copper content on phase composition and magnetic properties of ultra-fine powders of AlCoCrCuxFeNi (x  0, 1, 2) high-entropy alloys produced by ultrasonic ball milling, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1213 (2022); https://doi.org/10.15407/mfint.44.09.1213
  113. C. Xu, Q. Shen, S. Feng, F. Li, M. Liu, X. Wang, and W. Liu, Effect of aging treatment on the microstructure and mechanical properties of Al0.4Cr0.7FeNi2V0.2 high entropy alloy, Mater. Today Commun., 45: 112296 (2025); https://doi.org/10.1016/j.mtcomm.2025.112296
  114. M. Zhao, J. Wang, H. Li, H. Yang, Y. Zhou, and J. Li, Grain size effects on mechanical behavior of Al0.25CoCrFeNi high-entropy alloy at room and cryogenic temperatures, Intermetallics, 183: 108792 (2025); https://doi.org/10.1016/j.intermet.2025.108792
  115. P. Kumar, D.H. Cook, W. Wang, M. Payne, P.P.P.O. Borges, A.M. Minor, M. Asta, and R.O. Ritchie, Fracture behavior of high-entropy alloys: Resistance to fracture from strain hardening and softening, Matter, 8, No. 4: 102042 (2025); https://doi.org/10.1016/j.matt.2025.102042
  116. H. Yi, C. Tao, C. Chen, J. Fan, and S. Wang, Enhanced cryogenic tensile properties in a Fe-high-entropy alloy, J. Alloys Compd., 1017: 179052 (2025); https://doi.org/10.1016/j.jallcom.2025.179052
  117. S. González, S. Wurster, C.G. Garay-Reyes, A. Hurtado-Macías, P. Ramasamy, D. Oleszak, C. Gammer, K.G. Prashanth, A. Martínez-García, J. Eckert, and R. Martínez-Sánchez, Mechanical properties of two novel non-equiatomic Zr–Hf–Ti–Cu–Ni–Co–Al high entropy alloys with high glass forming ability, J. Alloys Compd., 1024: 180196 (2025); https://doi.org/10.1016/j.jallcom.2025.180196
  118. K. Zhao, J. Wang, J. Xiao, Y. Shen, Y. Huang, and Z. Wang, Long-term stability of dual-phase FeNiAlCr high entropy alloy at 600 C, Phys. B Condens. Matter, 707: 417187 (2025); https://doi.org/10.1016/j.physb.2025.417187
  119. V.V. Girzhon, V.V. Yemelianchenko, and O.V. Smolyakov, Structure of high-entropy CoCrFeNi alloy obtained by laser Alloying, Metallofiz. Noveishie Tekhnol., 44, No. 6: 725 (2022); https://doi.org/10.15407/mfint.44.06.0725
  120. A.O. Perekos, B.N. Mordyuk, V.Z. Voynash, V.V. Bondar, Ye.O. Svystunov, D.L. Vashchuk, S.Yu. Makarenko, and T.G. Kabantsev, Structure, phase composition and magnetic properties of ultrafine powders of high-entropy alloys of the AlCoCrCuFeNi system with different contents of al and cr produced by ultrasonic treatment in a ball mill, Metallofiz. Noveishie Tekhnol., 44, No. 3: 311 (2022); https://doi.org/10.15407/mfint.44.03.0311
  121. G.S. Firstov, Yu.M. Koval, V.S. Filatova, V.V. Odnosum, G. Gerstein, and H.J. Maier, Development of high-entropy shape-memory alloys: structure and properties, Prog. Phys. Met., 24, No. 4: 819 (2023); https://doi.org/10.15407/ufm.24.04.819
  122. H. Ma, Y. Zhao, Y. Su, Z. Yu, and P.K. Liaw, Face-centered-cubic (FCC) to body-centered-cubic (BCC) phase-transformation-induced strengthening of nanoscale harmonic-like high-entropy alloys, Mater. Chem. Phys., 339: 130756 (2025); https://doi.org/10.1016/j.matchemphys.2025.130756
  123. S. Kvon, A. Issagulov, V. Kulikov, and S. Arinova, Niobium’s effect on the properties of a quasi-high-entropy alloy of the CoCrFeMnNi system, Metals, 14, No. 5: 564 (2024); https://doi.org/10.3390/met14050564
  124. S.S. Kvon, V.Y. Kulikov, A.Z. Issagulov, A.M. Dostayeva, and T.V. Kovalyova, Studying structure and properties of shaped ingots obtained in various conditions of crystallization, Metalurgija, 57, No. 4: 313 (2018).
  125. P.V. Kovalev, S.D. Popova, A.Z. Issagulov, V.Y. Kulikov, and S.S. Kvon, Investigation of the effect of high strength strips steel modification with rare-earth metal (REM), Metalurgija, 56, Nos. 3–4: 393 (2017).
  126. S.S. Kvon, A.Z. Issagulov, M.K. Ibatov, V.Y. Kulikov, and S.K. Arinova, Investigation of the properties of the CoCrFeMnNi alloy developed on the basis of the entropy approach, Metalurgija, 63, Nos. 3–4: 366 (2024).