Obtaining High-Entropy Alloys by the Laser Alloying Method: Experimental Results and Theoretical Calculations

GIRZHON V.V.$^{1}$ and YEMELIANCHENKO V.V.$^{2}$

$^1$National University ‘Zaporizhzhia Polytechnic’, 64 Zhukovs’ky Str., UA-69063, Zaporizhzhia, Ukraine
$^2$Scientific Lyceum of the Municipal Institution of Higher Education ‘Khortytsia National Educational and Rehabilitational Academy’ of Zaporizhzhia Regional Council, 59 Naukove Mistechko Str., UA-69017 Zaporizhzhia, Ukraine

Received / Final version: 11.03.2025 / 22.10.2025 Download PDF logo PDF

Abstract
The structural-phase state of high-entropy alloys in the Co–Cr–Fe–Ni, Al–Co–Cr–Fe–Ni, and Al–Co–Cr–Cu–Fe–Ni systems obtained by laser alloying of the surface layers of technically pure iron and aluminium with equiatomic mixtures of various combinations of Fe, Co, Cr, Ni, and Cu powders, are studied using XRD, EDX, and metallographic analysis methods. As shown, during laser alloying, the formation of dispersed multicomponent substitutional solid solutions based on b.c.c. and f.c.c. lattices is occurred in the surface layers, significantly increasing the microhardness of the alloyed surfaces. A theoretical model is developed that considers the real cooling conditions and the heterogeneous nature of the nucleation and crystallization processes. The intervals of melt cooling rates, in which the formation of single-phase b.c.c. (B2) or two-phase (b.c.c. (B2) + f.c.c.) alloys occur, are estimated. The influence of chemical composition on these cooling rates is analysed. The correlation between the density of heterogeneous crystallization centres and the volume fraction of the f.c.c. phase is established. The obtained results are of practical significance for creating coatings with improved mechanical properties suitable for use in extreme conditions.

Keywords: high-entropy alloys, laser alloying, rapid solidification, phase composition, microhardness.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: V.V. Girzhon and V.V. Yemelianchenko, Obtaining High-Entropy Alloys by the Laser Alloying Method: Experimental Results and Theoretical Calculations, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


References  
  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater., 6, No. 5: 299 (2004); https://doi.org//10.1002/ADEM.200300567
  2. S. Caramarin, I.C. Badea, L.F. Mosinoiu, D. Mitrica, B.A. Serban, N. Vitan, L.M. Cursaru, and A. Pogrebnjak, Appl. Sci., 14, No. 17: 7576 (2024); https://doi.org/10.3390/APP14177576
  3. S. Aravind Krishna, N. Noble, N. Radhika, and B. Saleh, J. Manuf. Process., 109: 583 (2022); https://doi.org/10.1016/j.jmapro.2023.12.039
  4. Y.F. Yang, F. Hu, T. Xia, R.H. Li, J.Y. Bai, J.Q. Zhu, J.Y. Xu, and G.F. Zhang, J. Alloys Compd., 1010: 177691 (2024); https://doi.org/10.1016/j.jallcom.2024.177691
  5. W.Y. Tang and J.W. Yeh, Metall. Mater. Trans. A, 40: 1479 (2009); https://doi.org/10.1007/s11661-009-9821-5
  6. B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai and M.X. Wang, J. Alloys Compd., 493, Nos. 1–2: 148 (2010); https://doi.org/10.1016/j.jallcom.2009.12.183
  7. P.A. Ibrahim, İ. Özkul and C.A. Canbay, Emergent Mater., 5: 1779 (2022); https://doi.org/10.1007/s42247-022-00349-z
  8. M.V. Karpets, O.M. Myslyvchenko, O.S. Makarenko, M.O. Krapivka, and V.F. Gorban’, Problems of Friction and Wear, 63: 103 (2014).
  9. M. Vaidya, G.M. Muralikrishna, and B.S. Murty, JMR, 34: 664 (2019); https://doi.org/10.1557/jmr.2019.37
  10. S. Daryoush, H. Mirzade,h and A. Ataie, JUFGNSM, 54: 112 (2021); https://doi.org/10.22059/jufgnsm.2021.01.1
  11. A. Kumar, A. Singh, and A. Suhane, Mater. Res. Express, 9: 052001 (2022); https://doi.org/10.1088/2053-1591/ac69b3
  12. S.K. Padamata, A. Yasinskiy, V. Yanov, and G. Saevarsdottir, Metals, 12, No. 2: 319 (2022); https://doi.org/10.3390/met12020319
  13. S.S. Oladijo, E.T. Akinlabi, F.M. Mwema, T.C. Jen, and O.P. Oladijo, Eng. Solid Mech., 12: 177 (2024); https://doi.org/10.5267/j.esm.2023.9.002
  14. O.C. Ujah, D.V. Von Kallon, and V.S. Aigbodion, Mater. Today Sustain., 25: 100639 (2024); https://doi.org/10.1016/j.mtsust.2023.100639
  15. M. El Garah, F. Schuster, and F. Sanchette, High Entropy Thin Films by Magnetron Sputtering: Deposition, Properties and Applications (IntechOpen: 2022); https://doi.org/10.5772/intechopen.105189
  16. S. Yadav, K. Biswas, and A. Kumar, Spark Plasma Sintering of Materials (Cham: Springer: 2019); https://doi.org/10.1007/978-3-030-05327-7_19
  17. P.J. Kelly and R.D. Arnell, Vacuum, 56, No. 3: 159 (2000); https://doi.org/10.1016/S0042-207X(99)00189-X
  18. Y. Zhang, High-Entropy Materials: A Brief Introduction (Singapore: Springer: 2019).
  19. O.I. Kushnerov and V.F. Bashev, East Eur. J. Phys., 3: 43 (2021); https://doi.org/10.26565/2312-4334-2021-3-06
  20. V.F. Bashev and O.I. Kushnerov, Phys. Metals Metallogr., 115: 692 (2014); https://doi.org/10.1134/S0031918X14040024
  21. S. Zhang, C.L. Wu, J.Z. Yi and C.H. Zhang, Surf. Coat. Technol., 262: 64 (2015); https://doi.org/10.1016/j.surfcoat.2014.12.013
  22. S. Zhang, C.L. Wu, and C.H. Zhang, Mater. Lett., 141: 7 (2015); https://doi.org/10.1016/j.matlet.2014.11.017
  23. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Surf. Coat. Technol, 315: 368 (2017); https://doi.org/10.1016/j.surfcoat.2017.02.068
  24. Z.U. Arif, M.Y. Khalid, E. Rehman, S. Ullah, M. Atif, and A. Tariq, J. Manuf. Process., 68: 225 (2021); https://doi.org/10.1016/j.jmapro.2021.06.041
  25. J.M. Poate, G. Foti, and D.C. Jacobson, Surface Modification and Alloying: by Laser, Ion, and Electron Beams (Springer Science & Business Media: 2013).
  26. H. Zhang, Y. Pan, Y.Z. He, J.L. Wu, T.M. Yue, and S. Guo, JOM, 66: 2057 (2014); https://doi.org/10.1007/s11837-014-1036-6
  27. H. Zhang, Y.Z. He, X.M. Yuan, and Y. Pan, Appl. Surf. Sci., 256, No. 20: 5837 (2010); https://doi.org/10.1016/j.apsusc.2010.03.056
  28. X. Qiu, Y. Zhang, and C. Liu, J. Alloys Compd., 585: 282 (2014); https://doi.org/10.1016/j.jallcom.2013.09.083
  29. A. Vida, J. Lábár, Z. Dankházi, Z. Maksa, D. Molnár, L. Varga, S. Kalácska, M. Windisch, and G. Huhn, Materials, 14, No. 5: 1076 (2021); https://doi.org/10.3390/ma14051076
  30. T.M. Yue, H. Xie, X. Lin, H. Yang, and G. Meng, Entropy, 15, No. 7: 2833 (2013); https://doi.org/10.3390/e15072833
  31. C. Chattopadhyay, A. Prasad, and B.S. Murty, Acta Mater., 153: 214 (2018); https://doi.org/10.1016/j.actamat.2018.05.002
  32. C. Chattopadhyay and B.S. Murty, Scr. Mater., 116: 7 (2016); https://doi.org/10.1016/j.scriptamat.2016.01.022
  33. V.V. Girzhon, V.V. Yemelianchenko, and O.V. Smolyakov, Metallofiz. Noveishie Tekhnol., 44, No. 6: 725 (2022); https://doi.org/10.15407/mfint.44.06.0725
  34. J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, and E. Beaugnon, Mater. Des., 95: 183 (2016); https://doi.org/10.1016/j.matdes.2016.01.112
  35. A. Jacob, E. Povoden-Karadeniz, and E. Kozeschnik, Calphad, 60: 16 (2018); https://doi.org/10.1016/j.calphad.2017.10.002
  36. O. Cortazar-Martínez, J.A. Torres-Ochoa, J.G. Raboño-Borbolla, and A. Herrera-Gomez, Appl. Surf. Sci., 542: 148636 (2021); https://doi.org/10.1016/j.apsusc.2020.148636
  37. J.M. Wang, G.H. Liu, Y.L. Fang, and W.K. Li, Rev. Chem. Eng., 32: 551 (2016); https://doi.org/10.1515/revce-2015-0067
  38. V.V. Girzhon, V.V. Yemelianchenko, and O.V. Smolyakov, Metallofiz. Noveishie Tekhnol., 43, No. 1: 399 (2021); https://doi.org/10.15407/mfint.43.03.0399
  39. H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Binary Alloy Phase Diagrams (ASM International: 2016); https://doi.org/10.31399/asm.hb.v03.a0006247
  40. V. Raghavan, J. Phase Equilib. Diff., 29: 515 (2008); https://doi.org/10.1007/s11669-008-9413-x
  41. V. Raghavan, J. Phase Equilib. Diff., 33: 55 (2012); https://doi.org/10.1007/s11669-012-9981-7
  42. V. Raghavan, J. Phase Equilib. Diff., 29: 180 (2008); https://doi.org/10.1007/s11669-008-9452-3
  43. X.L. Liu, T. Gheno, B.B. Lindahl, G. Lindwall, B. Gleeson, and Z.K. Liu, PLoS ONE, 10, No. 4: 1 (2015); https://doi.org/10.1371/journal.pone.0121386
  44. V. Raghavan, J. Phase Equilib. Diff., 27: 372 (2006); https://doi.org/10.1007/s11669-006-0009-z
  45. P. Jeglič, S. Vrtnik, M. Bobnar, M. Klanjšek, B. Bauer, P. Gille, Yu. Grin, F. Haarmann, and J. Dolinšek, Phys. Rev. B, 82: 104201 (2010); https://doi.org/10.1103/PhysRevB.82.104201
  46. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel and J. Banhart, Acta Mater., 59, No. 1: 182 (2011); https://doi.org/10.1016/j.actamat.2010.09.023
  47. M.V. Ivchenko, V.G. Pushin, and N. Wanderka, Tech. Phys., 59: 211 (2014); https://doi.org/10.1134/S1063784214020108
  48. B.S. Murty, J.W. Yeh, S. Ranganathan, and P.P. Bhattacharjee, High-Entropy Alloys (Elsevier: 2019).
  49. V.V. Girzhon, V.V. Yemelianchenko, and O.V. Smolyakov, Acta Metallurgica Slovaca, 29, No. 1: 44 (2023); https://doi.org/10.36547/ams.29.1.1710
  50. B. Grushko and Ch. Freiburg, J. Mater. Res, 7: 1100 (1992).
  51. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, and H.C. Chen, Mater. Lett., 61, No. 1: 1 (2007); https://doi.org/10.1016/j.matlet.2006.03.140
  52. G. Shao and P. Tsakiropoulos, Acta Metall. Mater., 42, No. 9: 2937 (1994); https://doi.org/10.1016/0956-7151(94)90391-3
  53. V.V. Girzhon, V.V. Yemelianchenko, O.V. Smolyakov, and A.S. Razzokov, Results in Materials, 15: 100311 (2022); https://doi.org/10.1016/j.rinma.2022.100311
  54. D.R. Uhlman, J. Non-Cryst. Solids, 7, No. 4: 337 (1987); https://doi.org/10.1016/0022-3093(72)90269-4
  55. J. Christian, The Theory of Transformations in Metals and Alloys (Pergamon: 2002).
  56. C.V. Thomson and F. Spaepen, Acta Metall., 27, No. 12: 1855 (1979); https://doi.org/10.1016/0001-6160(79)90076-2
  57. D.I. Anpilogov and V.V. Girzhon, Ukr. Phys. J., 42: 301 (1997).
  58. L.M. Pan, N. Saunders, and P. Tsakiropoulos, Mater. Sci. Technol., 5: 609 (1989).
  59. G. Shao and P. Tsakiropoulos, Acta Metall. Mater., 42, No. 9: 2937 (1994); https://doi.org/10.1016/0956-7151(94)90391-3
  60. H. Jones, Phil. Mag. B, 61: 487 (1990).
  61. V.N. Yeremenko, Y.V. Natanzon, and V.I. Dybkov, J. Less-Common Met., 50, No. 1: 29 (1976); https://doi.org/10.1016/0022-5088(76)90251-4
  62. S. Rohila, R.B. Mane, S. Naskar, and B.B. Panigrahi, Mater. Lett., 256: 1 (2019); https://doi.org/10.1016/j.matlet.2019.126668
  63. Z. Jian, K. Kuribayashi, and W. Jie, Mater. Trans., 43, No. 4: 721 (2002); https://doi.org/10.2320/matertrans.43.721
  64. The Periodic Table of the Elements https://www.webelements.com
  65. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM, 64: 839 (2012); https://doi.org/10.1007/s11837-012-0365-6